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Antonio Hervás Jorge Universitat Politècnica de València
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Pérez-Benito, F.J., Larroza, A., Perez-Cortes, J.-C., Llobet, R.

Scatter and random correction of PET list-mode data using machine
learning approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Joan Prats-Climent, Filomeno Sánchez, Antonio Javier González,
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José Mart́ınez Usó
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1 Federal University of Minas Gerais, Av. Presidente Antônio Carlos, Belo Horizonte,
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Abstract. The interconnections among sustainability factors in airports
and their effects on occupational health are of paramount importance.
Not only are airports key drivers of economic growth, employment, and
tourism, but they also have significant and far-reaching environmental
and social impacts. Therefore, achieving sustainable airport operations
requires a delicate balance between economic, environmental, and social
factors. To this end, collaboration among stakeholders is crucial for de-
veloping innovative solutions that protect workers’ health and promote
sustainability. Mathematical models play a key role in decision-making
and policy development to ensure sustainable airports while safeguarding
workers’ well-being. In this context, this contribution proposes the use
of Fuzzy Cognitive Maps (FCMs) to evaluate the most significant Occu-
pational Stress Risks (OSRs) for an Italian airport. The analysis aims to
assess the subset of OSRs whose potential occurrence may likely impact
the occurrence of other related OSRs. The study concludes by proposing
potential prevention/reduction strategies for each of these OSRs.

Keywords: Occupational Health, Sustainability, Fuzzy Cognitive Maps

1 Introduction

Achieving sustainable airport operations requires a delicate balance between
the economic, environmental, and social dimensions of sustainability [1], while
also considering the health and safety of workers who are exposed to various
physical and psychological hazards such as noise, vibration, air pollution, and
stress. Pursuing this goal requires the effort and involvement of all stakeholders,
including airport operators, airlines, passengers, local communities, and govern-
ment agencies. Collaboration and partnerships among these stakeholders can
help identify and implement innovative and effective solutions that promote sus-
tainability [2] and protect the environment and public health. This necessitates
an integrated and comprehensive approach that takes into account the interde-
pendencies among various sustainability factors and their potential effects on
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occupational health. Sustainable airport operations can also generate numerous
benefits, such as improved air quality, reduced noise pollution, enhanced energy
efficiency, and cost savings, which can contribute to the airport’s long-term suc-
cess and competitiveness. The complexity of this problem makes it a fascinating
and challenging area for human behavior engineering modeling. By understand-
ing how different sustainability factors interconnect and impact human behav-
ior, we can design interventions that promote sustainable practices and protect
workers’ health. To this end, suitable decision-making mathematical models can
help analyze the relationships among the critical factors that impact sustainabil-
ity and occupational health. These models can facilitate trade-off evaluations
among sustainability dimensions and provide decision-makers with a powerful
tool to optimize outcomes and inform policy decisions. By leveraging the infor-
mation gained from these models, we can achieve sustainable airport operations
that promote economic growth and social and environmental sustainability while
safeguarding the health and safety of airport workers.

High-risk environments can lead to increased stress levels, negatively im-
pacting workers’ well-being. Stress can compromise focus and decision-making
abilities, consequently elevating the risks of accidents. Therefore, implementing
supportive measures is essential to manage stress and ensure overall safety. Oc-
cupational stress encompasses the physical, emotional, and psychological strain
that individuals experience due to their work. Factors like heavy workloads, tight
deadlines, lack of control, conflicts with colleagues, and job insecurity contribute
to this stress. Prolonged exposure to such stressors can have harmful effects on
mental and physical health, job performance, and overall well-being. In high-risk
environments such as the aviation industry, emergency services, and construction
sites, among others, occupational stress intensifies safety hazards exponentially.
It becomes crucial for companies to establish a methodological evaluation of oc-
cupational stress risks and develop effective management plans. Mathematical
modeling plays a pivotal role in this process, allowing for the enhancement of
safety measures and consideration of uncertain conditions. By managing risks
proactively, organizations can create a safer and healthier work environment for
their employees.

2 Methodological approach

Fuzzy Cognitive Maps (FCMs) are advanced mathematical models designed to
represent complex relationships and interactions between different concepts or
variables. These models utilize fuzzy logic, which allows them to handle the in-
herent uncertainty and imprecision in human thinking and decision-making. In
the context of occupational stress risk evaluation, FCMs offer valuable advan-
tages. They help capture the intricate nature of stress risks, providing a deeper
understanding of the factors involved. By building FCMs, informed decision-
making becomes possible, leading to the development of effective stress reduction
strategies.
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Specifically, FCMs can be useful in several ways in the context of occupational
stress risk evaluation, as described in the following.

– Identifying key factors: FCMs help identify the most influential factors con-
tributing to occupational stress, highlighting the critical areas that require
intervention or management.

– Assessing risk interdependencies: FCMs enable the evaluation of how dif-
ferent stress risks interact with and influence each other. This allows for a
comprehensive understanding of the interconnectedness and potential cas-
cading effects of stress risks within an occupational setting.

– Predicting stress outcomes: FCMs can be used to simulate different scenarios
and predict the potential impact of interventions or changes in stress risk
factors on occupational stress outcomes. This helps in developing targeted
strategies for stress prevention and management.

A detailed application description can be consulted in [3].

3 The case of an Italian airport

As previously observed, airports can be highly stressful environments for opera-
tors, subjecting them to significant stress risks. An analysis of an Italian airport
focused on identifying and understanding four key risk categories and, for each of
these areas, a set of three Occupational Stress Risks (OSRs) that affect workers
(twelve OSRs in total). To gain deeper insights into the complex relationships
linking these OSRs with each other, an FCM was built on the set of twelve
identified OSRs. The elements of analysis are summarized in the following.

– Workload and Time Pressure
• OSR1: High workload and demanding schedules leading to increased
stress levels.

• OSR2: Tight deadlines and time pressure to ensure efficient operations.
• OSR3: Balancing multiple tasks simultaneously, causing work overload
and time constraints.

– Customer Service and Interactions
• OSR4: Dealing with difficult or upset passengers, leading to emotional
stress.

• OSR5: Managing conflicts and resolving disputes between passengers.
• OSR6: Constantly maintaining friendly and professional conduct while
handling complaints or requests.

– Shift Work and Irregular Hours
• OSR7: Irregular and rotating shifts disrupting sleep patterns and causing
fatigue.

• OSR8: Difficulty in maintaining work-life balance due to unpredictable
schedules.

• OSR9: Social and personal life limitations resulting from working during
weekends, holidays, or night shifts.
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– Sustainability and Job Insecurity
• OSR10: High turnover rates due to insecurity hinder sustainable prac-
tices.

• OSR11: Insufficient career development challenges airport sustainability.
• OSR12: Insecure employment undermines employee well-being and hin-
ders airport sustainability.

Figure 1 presents linguistic evaluations of preference which have been col-
lected with the support of an expert in the field of safety and security working
at the airport. These evaluations refer to the intensity of causality that an el-
ement imparts to another one, expressed as: very low (VL), low (L), medium
(M), high (H), very high (VH).

Fig. 1: Linguistic evaluations of preference.

Fig. 2: Defuzzified fuzzy numbers and total effect (TE) associated to each OSR,
OSRs 9, 10 and 12 having associated higher influence suggesting higher priority.
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These evaluations have been translated to trapezoidal fuzzy numbers, as
shown in [4], which have been defuzzified by applying the centroid method, as
explained in [5]. Crisp evaluations are reported in Figure 2, while the FCM dis-
played in Figure 3 was produced with the MentalModeler software. It shows the
132 connections identified for the 12 elements, which correspond to 11 connec-
tions per element.

The study aims to shed light on the interconnections and relationships be-
tween different OSRs within each identified category. By employing FCM, which
incorporates fuzzy logic, we are able to account for the inherent uncertainty and
intricacies of human thinking and decision-making processes as well as the inter-
dependencies of OSRs. By capturing these interdependencies, decision-makers,
and stakeholders can gain valuable insights into the root causes and potential
cascading effects of stress risks in the airport environment.

The findings of this FCM-driven approach provided a foundation for de-
veloping targeted stress reduction strategies and interventions. With a deeper
understanding of the connections between OSRs, airport management, and rele-
vant authorities can be better equipped to implement measures that address the
underlying issues effectively. To conclude our study, we propose a set of potential
strategies that could be implemented by the management to deal with the most
interdependent OSRs, as a result of the FCM-based analysis.

– OSR9: Social and personal life limitations resulting from working during
weekends, holidays, or night shifts
• Flexible Scheduling and Shift Rotation: Implement a system that allows
employees to have a fair distribution of working hours, including week-
days and weekends off, reducing social and personal life limitations.

• Employee Support Programs: Establish counseling services, stress man-
agement workshops, and resources to assist employees in coping with
the challenges of working irregular hours and provide a supportive work
environment.

• Job Rotation and Cross-Training: Rotate employees through different
roles and responsibilities to break the monotony, prevent burnout, and
enhance their skills, while also allowing them to fill in for one another
during undesirable shifts.

– OSR10: High turnover rates due to insecurity hinder sustainable practices
• Enhance Job Security Measures: Implement measures to enhance job se-
curity for airport employees, such as offering long-term contracts, provid-
ing clear career progression pathways, and ensuring fair and competitive
compensation.

• Foster a Positive Organizational Culture: Cultivate a positive organiza-
tional culture that prioritizes employee well-being, open communication,
and employee involvement in decision-making processes.

• Implement Sustainable Work Practices: Establish sustainable work prac-
tices within the airport environment. This can include initiatives such
as promoting work-life balance, reducing excessive workloads, and im-
plementing stress management programs.
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Fig. 3: FCM produced with the MentalModeler software.
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– OSR12: Insecure employment undermines employee well-being and hinders
airport sustainability
• Secure Employment Contracts: Offer stable and secure employment con-
tracts with fair compensation and clear career paths to enhance employee
well-being and support airport sustainability.

• Employee Engagement and Empowerment: Foster a culture of employee
engagement, involvement, and empowerment through decision-making
opportunities, skill development, and recognition, promoting well-being
and alignment with sustainability goals.

• Sustainable Workforce Practices: Implement practices that prioritize work-
life balance, manage workloads effectively, and provide resources for
stress management, ensuring a healthy and sustainable workforce while
addressing occupational stress risks.

4 Conclusions and future directions

Occupational stress poses a substantial risk, particularly in complex work envi-
ronments, impacting both employee well-being and performance. To gain com-
prehensive insights into stress-related factors, a meticulous analysis was herein
conducted using the FCM approach at an Italian airport. This method allowed
for a thorough understanding of the interconnections and causal relationships
among various stress-related factors. Specifically, the FCM analysis revealed two
primary areas of concern (intensity of work and sustainability) and three main
OSRs (OSR9, OSR10, OSR12). In response to the identified risks, a set of mi-
tigation strategies has been proposed, aiming at fostering a healthier and more
supportive work environment for airport employees.

Future studies aim to enhance mathematical models for a complete under-
standing of occupational stress. Advanced modeling would enable the quantifi-
cation of stressors and the development of targeted interventions while real-time
data and computational techniques would enhance stress prediction and the de-
velopment of personalized interventions.

References

1. Sreenath, S., Sudhakar, K., Yusop, A.F, Sustainability at airports: Technologies
and best practices from ASEAN countries Journal of Environmental Management,
299:113639, 2021.

2. Ramakrishnan, J., Liu, T., Yu, R., Seshadri, K., Gou, Z., Towards greener airports:
Development of an assessment framework by leveraging sustainability reports and
rating tools Environmental Impact Assessment Review, 93:106740, 2022.

3. Kosko, B. (1986). Fuzzy cognitive maps. International journal of man-machine stud-
ies, 24(1), 65–75.

4. Poomagal, S., Sujatha, R., Kumar, P. S., & Vo, D.-V. N. (2020). A fuzzy cognitive
map approach to predict the hazardous effects of malathion to environment (air,
water and soil). Chemosphere, 263, 127926.

5. Wang, Y. M., Yang, J. B., Xu, D. L., & Chin, K. S. (2006). On the centroids of
fuzzy numbers. Fuzzy sets and systems, 157(7), 919-926.



Effect of electron space-charge on the gain of a
two-dimensional photomultiplier tube model

D. Esperante12, B. Gimeno1, D. Ginestar3, D. González-Iglesias1, J.L. Hueso3,
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3 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València,
Camı́ de Vera, s/n. 46022 València, Spain.

Abstract. Photomultiplier tubes (PMTs) [20] are widely used as pho-
todetectors in military, industrial and medical applications since almost
one century. When faced with high-intensity light pulses, PMTs exhibit a
non-linear response due to extrinsic factors like voltage supply electron-
ics [9] as well as intrinsic ones, such as electron space-charge: a cloud of
densely packed electron trajectories perturbing the electrostatic field in
the vacuum of the PMT. To quantify the effect of space charge on the
amplification factor (gain) of the PMT, we perform a Monte Carlo sim-
ulation of a two-dimensional model of a PMT. Based on an X-ray image
of it, we manually contour the dynodes, anode, cathode and glass enve-
lope. The electrostatic field is solved using a two-dimensional mesh after
setting the boundary conditions in the faces of the contoured geome-
tries, namely the voltages recommended by the manufacturer on each of
the electrodes. The electron trajectories are then calculated by using the
Boris leap-frog method [10] and the amplification is based on Vaughan’s
model [16]. The effect of space-charge is estimated iteratively and with-
out time dependence, by incorporating a charge density into the solution
of the electrostatic field and retracing the trajectories. In each step, the
charge density is determined by the distribution of electron trajectories
found out in the previous iteration. Finally, the effect of the space charge
on the PMT gain is studied in terms of the stationary photocathode cur-
rent for a fixed supply voltage. In the future, the extension of this study
to 3D geometry and comparison with experimental measurements are
planned.

Keywords: Photomultiplier tubes, space-charge effect, Poisson equa-
tion

1 Introduction

A Photomultiplier tube (PMT) is a light sensor that can detect even a single pho-
ton by producing an amplified electrical signal of it, and it has been around for
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almost one century [12,20]. The use of photomultipliers pervades a wide range of
industries, including environmental radiation control, homeland security, nuclear
physics, life sciences, medical imaging, and treatment monitoring [7, 8, 19].

A photomultiplier consists of a photocathode followed by an electron mul-
tiplier device. Due to the photoelectric effect, electrons are ejected from the
photocathode and accelerated into a metallic surface known as dynode by elec-
tric forces inside the PMT. Multiple additional electrons are produced as a result
of the collision between the electron and the dynode and are then accelerated
into the next dynode. A cascaded chain of about ten dynodes results in an
electron gain of typically ≈ 106. In this way, a low intensity light entering the
photomultiplier results in a measurable current of electrons.

PMTs have been extensively studied in the literature from different points
of view, [4,9,11,20], but there are few mathematical models [21] of these devices
based on fundamental physics principles. In [13], a Monte Carlo method is pro-
posed taking into account a static electric field computation, and the electron
dynamics is modeled using the Lorentz’s force associated with this electric field.

It is known that under high-intensity light pulses, PMTs exhibit a non-linear
response due to extrinsic factors like voltage supply electronics [9] as well as
intrinsic ones, such as electron space-charge: a cloud of densely packed electron
trajectories affecting the electric field inside the PMT.

To quantify the effect of space-charge on the amplification factor (gain) of
the PMT, we perform a Monte Carlo quasi-static simulation based on a two-
dimensional model of the PMT. Following [13], the electrostatic field is solved
using a two-dimensional mesh after setting the boundary conditions in the faces
of the contoured geometries, namely the voltages recommended by the manufac-
turer on each of the electrodes. The electron trajectories are then calculated by
using the Boris leap-frog method [10] and the amplification is based on Vaughan’s
model [16].

The effect of space-charge should be computed making use of the Vlasov-
Poisson equations [18], but to solve this model in a multidimensional geometry
is quite demanding from the computational point of view [3]. Instead, we assume
that a quasi-static treatment can give accurate enough results, and the electric
field is estimated iteratively, by incorporating a charge density into the solution
of the electrostatic field and retracing the trajectories. In this way, the space-
charge effect for different light intensities can be evaluated.

2 Physical models

We studied a PMT with 8 dynodes [13], whose geometry is shown in Figure 1.

We designed a 2D model of the PMT corresponding to an axial plane, as
shown in Figure 2. To simulate the PMT operation, we track the trajectories
of a given number of electrons that start from the cathode and, driven by the
electric field, hit on the different dynodes, producing secondary electrons whose
trajectories are also tracked until they are trapped in a dynode, they are absorbed
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Fig. 1: X-ray image of the photomultiplier tube under study.

(a) Coarse model.
(b) Fine model.

Fig. 2: 2D model of the photomultiplier tube.
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or they arrive to the anode. A plot of different electron trajectories is shown in
Figure 3.

Fig. 3: Different electron trajectories from the cathode to the anode of the pho-
tomultiplier tube.

2.1 Electric field computation

To obtain the electric field, we have used the finite element method based on a
triangular mesh. In particular, the electrostatic module of the Partial Differential
Equations Toolbox of Matlab has been used. In general, this software solves the
Poisson equation for the electric potential, V ,

−∇⃗
(
ε∇⃗V

)
= ρ, (1)

where ε is the dielectric permittivity, ρ is the electric charge density and the
electric field yields E⃗ = −∇⃗V .

The boundary conditions are the Dirichlet boundary conditions. The voltage
of each dynode is constant and set by the electronics setup [2] and at the outer
boundary V = −1500V is considered.

2.2 Electron dynamics

The dynamics of the electrons in the electric field are governed by the relativistic
Second Newton’s law associated with Lorentz’s force

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
= m

du⃗

dt
, (2)
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where m is the electron rest mass, q is the charge of the electron, E⃗ and B⃗ are
the electric and magnetic fields, v⃗ is the velocity vector, u⃗ = γv⃗ and γ is the
Lorentz factor,

γ =
1√

1−
(
v
c

)2 ,
being v the magnitude of v⃗.

To discretize equation (2), we assume a discrete time step ∆t, and tn = n∆t,
and we make use of Boris method [1, 14], based on the steps,

x⃗n+ 1
2
= x⃗n +

u⃗n
2γn

∆t,

u⃗n+1 − u⃗n
∆t

=
q

m

(
E⃗
(
x⃗n+ 1

2
, tn+ 1

2

)
+ ⃗̄v × B⃗

(
x⃗n+ 1

2
, tn+ 1

2

))
,

x⃗n+1 = x⃗n+ 1
2
+

u⃗n+1

2γn+1
∆t (3)

assuming that the particle has an average velocity

⃗̄v =
u⃗n+1 + u⃗n
2γn+ 1

2

.

2.3 Secondary emission yield

After each step in the electron trajectory, it is checked if it collides with any of
the PMT electrodes. When the electrons strike a given electrode (dynode), which
is covered with a thin layer of secondary emissive material, if they have sufficient
energy, they generate a specific number of secondary electrons. This process is
characterized by the total Secondary Electron Yield (SEY) coefficient, δ, that
is the average number of electrons emitted per incident one. This coefficient
depends on the primary kinetic energy and the incidence angle of the impacting
electron, and the modified Vaughan’s model has been used for its computation,
[15,17].

Typically, macroparticles (with mass M = Nm and charge Q = Nq) are
used to represent N electrons. Because the ratio of charge to mass is the same,
the trajectory of these macroparticles will be the same as that of the individual
electrons if we ignore interactions between electrons.

2.4 Computation of the space-charge effect

A rigorous approach to take into account the effect of the electron charge in the
global electric field driving the movement of electrons through the photomulti-
plier is solving the Vlasov-Poisson equations where a kinetic equation (similar
to (2)), for a given distribution of particles, is coupled with the Poisson equation
(1), where the charge density ρ depends on the spatial distribution of electrons.
But, as it has been already mentioned, this approach is very expensive for a
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realistic model, even in a 2D geometry. Thus, we propose to use a quasi-static
approach that initially computes the electric field without considering the elec-
tron trajectories. With this field, the trajectories of Ni initial particles emitted
from the cathode are determined using equations (3), taking into account the
secondary electrons generated by the impacts on the different dynodes.

These obtained trajectories are assumed to be stationary and they define a
spatial electric charge distribution that is used to recalculate the electric field
using again Poisson’s equation (1). This process is repeated in an iterative way
until the electric field does not change.

3 Numerical results

For the simulations, we have considered two different 2D models of the PMT tube
depicted in Figure 2. The second model has more realistic elements requiring a
finer mesh for the solution of Poisson’s equation.

For each PMT model we have carried out two simulations. In one simulation
we assume that the secondary electrons are emitted normally to the dynode
contour in the impact point. For this simulation, 320 electrons are traced in
order to compute the electric field for the next iteration, and the electric field
calculation is repeated twice.

In the other simulation, the emission direction is computed projecting in the
plane 3D directions from a cos θ distribution (see [5, 6]). In this case, one needs
to throw more electrons (1280) and iterate more times (four) in order to get
relatively smooth results.

In all cases, the starting points of the trajectories are equispaced spanning
practically the whole extent of the cathode.

We repeat these computations for different cathode illuminations, that result
in different electron currents Ik in the cathode, in order to analyze their influence
on the space-charge effect. The number of electrons arriving to the anode per
electron emitted by the cathode is the gain of the PMT. The average gain of the
trajectories is computed, first with the electric field from the Poisson’s equation
without the space charge effect, and then considering the one created by the
electrons supposed stationary along their trajectories.

The results are shown in figures 4–7.

Considering orthogonal emission, the finer model yields a slightly superior
average gain, 4.6× 105, than that of the coarser model, 3.6× 105. With random
emission angle, the average gain drops to about 1.35 × 105 for the finer model
and 1× 105 for the coarser one.

The field effect can be observed in Figure 4 corresponding to the coarser
model with orthogonal emission, from Ik = 0.0316A on. In the other cases,
there is no significant difference in the average gain for different values of Ik.



16 D. Esperante et al.

Fig. 4: Average gain for 320 throws with the coarse PMT model. Orthogonal
emission.

Fig. 5: Average gain for 1280 throws with the coarse PMT model. Angle emission
cos θ-distributed.
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Fig. 6: Average gain for 320 throws with the fine PMT model. Orthogonal emis-
sion.

Fig. 7: Average gain for 1280 throws with the fine PMT model. Angle emission
cos θ-distributed.
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4 Conclusions

We have developed a quasi-static model to take into account the space charge
effect in a photomultiplier device based on the correction of the electric field
when the charge of stationary trajectories of electrons is considered. The gain of
the PMT has been computed for different illuminations and different emission
models in two 2D geometries. The obtained results show that only for unrealistic
illuminations the space charge effect has to be taken in consideration for the
studied PMT.
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ulation of electron transport and secondary emission in a photomultiplier tube.
IEEE Sensors Journal, Submitted.

https://www2.pv.infn.it/∼debari/doc/Flyckt Marmonier.pdf
https://www.hamamatsu.com/resources/pdf/etd/PMT handbook v4E.pdf


Effect of electron space-charge 19

14. Bart Ripperda, Fabio Bacchini, Jannis Teunissen, Chun Xia, Oliver Porth, Lorenzo
Sironi, Giovanni Lapenta, and Rony Keppens. A comprehensive comparison of
relativistic particle integrators. The Astrophysical Journal Supplement Series,
235(1):21, 2018.

15. J Rodney M Vaughan. A new formula for secondary emission yield. IEEE Trans-
actions on electron devices, 36(9):1963–1967, 1989.

16. C. Vicente, M. Mattes, D. Wolk, B. Mottet, H.L. Hartnagel, J.R. Mosig, and D.
Raboso. Multipactor breakdown prediction in rectangular waveguide based com-
ponents. In IEEE MTT-S International Microwave Symposium Digest, 2005, pages
1055–1058, 2005.

17. Carlos Vicente, Michael Mattes, Dieter Wolk, B Mottet, HL Hartnagel, JR Mosig,
and D Raboso. Multipactor breakdown prediction in rectangular waveguide based
components. In IEEE MTT-S International Microwave Symposium Digest, 2005.,
pages 1055–1058. IEEE, 2005.

18. Anatoli Aleksandrovich Vlasov. The vibrational properties of an electron gas. So-
viet Physics Uspekhi, 10(6):721, 1968.

19. Theresa Werner, Jonathan Berthold, Fernando Hueso-González, Toni Koegler,
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Abstract. Poly-crystalline zirconia based ceramics (nc-YSZ) have suit-
able thermo-optic and biomedical properties for the implementation of
biomedical transparent cranial implant, called Window to the Brain
(WttB). This implant has the advantage of allowing optical access to
the brain for medical treatments with laser sources. Previous works have
determined the physic parameters of the nc-YSZ, and experimental data
for bacteria anti-fouling via thermal methods using laser sources have
been obtained. In this work, a thin layer of copper nanoparticles has been
added underneath the WttB. Mathematical models with the theorethi-
cal physical properties of nanoparticles are made for this configuration.
The aim is to use the nanoparticles properties to perform bacteria anti-
fouling with a lesser penetration of the temperature increments in the
brain tissue. Preliminary computational results are obtained, comparing
the configuration with and without the nanoparticles layer, using finite
elements resolution.

Keywords: nanocrystalline yttria stabilized zirconia, cranial implant,
Window to the brain, heat conduction, photothermal effect, laser sources,
copper nanoparticles, computer modeling

1 Introduction

The good thermo-optic and biomedical properties of poly-crystalline zirconia
based ceramics (nc-YSZ) have been widely studied [1], [2], [3], [4], [5] in order
to make them suitable for the implementation of biomedical implants. In par-
ticular the transparent cranial implant called Window to the Brain (WttB) [6],
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[7], [8], [9], [10]. This implant has the advantage of allowing optical access to the
brain for medical treatments with laser sources, which can vary from diagnosis
to surgical interventions for tumor destruction [11].

Despite its good properties, the WttB implant has some problems to solve in
order to make a viable biomedical implant, one of the most important being the
bacteria proliferation underneath the WttB. Bacteria proliferation is a common
issue in biomedical implants, but for the WttB is critical due to its proximity to
the brain. Thus, is mandatory to perform bacteria anti-fouling. Thermal meth-
ods using laser sources have been explored, and experimental data have been
obtained [12], [13].

In this work, a new configuration is tested, where a thin layer of copper nanopar-
ticles has been added underneath the WttB. The aim is to use the nanoparticles
properties to perform bacteria anti-fouling with a lesser penetration of the tem-
perature increments in the brain tissue. The objective is to obtain ∆T ≥ 10 oC
in the bacteria for anti-fouling, while ∆T < 10 oC in the brain in order to avoid
neural degradation.

Mathematical model presented in [14] is extended to this configuration. The
physic parameters of the nc-YSZ have been determined using experimental mea-
surements and optimization of mathematical models [15], [14], [16]. Physical
properties of copper nanoparticles layer are unknown, with no experimental mea-
surements performed yet. A theoretical study of these properties is performed in
this work, and preliminary computational results are obtained in order to test
the viability of this configuration.

2 Mathematical model

Heat equation (1) is used for describing the evolution of temperature increases
[17] in the mathematical model, and Beer-Lambert equation (2) is used for de-
scribing the energy absorption of the laser irradiation from the material [18].
Heat and Beer-Lambert equations are coupled by the heat source term (3);

ρc
∂T

∂t
= ∇(k∇T ) +Q (1)

where T is the temperature, ρ is the material density, c is the thermal capacity,
k is the thermal conductivity and Q is the external heat source.

∂I

∂z
= −αI (2)

where I is the intensity function, α is the absorption coefficient of the material
and z is the spatial variable.

Q =
∂I

∂z
(3)
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These equations are applied to the geometry described in Figure 1, which is a
multi-layer disc with layers of WttB, nanoparticles, bacteria and agar; divided
in two concentric domains, A and B. Heat equation applies to domain A and B,
while Beer-Lambert equation and heat source apply to domain A.

Regarding the thermal problem, the boundary conditions are natural heat con-
vection n1 · q = h · (Ta − T ) for the top surface of the D1 layer, null flux for
the edges of layers D1 to D4 and constant temperature T0=37oC of the human
body for the bottom surface of the D4 layer.

Regarding the optical problem, the boundary conditions are null flux for the
boundary between domains A and B, and gaussian intensity distribution of the
laser source for the top surface of domain A I(r) = I0 · (1− R) · e−r2 , where R
is the reflection coefficient and r is the radial spatial coordinate.

(a) (b)

Fig. 1: Geometric representation of the multi-layer disc with axis-symmetric ge-
ometry, where D1 is the layer of WttB, D2 is the layer of copper nanoparticles,
D3 is the layer of bacteria and D4 is the layer of agar. A is the irradiated do-
main and B the non-irradiated domain. (Spatial dimensions in mm and schemes
represented out of scale).

3 Matherial properties

3.1 Known properties

The known physical properties of the Wttb and the agar, introduced in the
mathematical model as parameters, are listed in Table 1. Note bacteria layer
has the same physical properties as the agar, since bacteria layer composition is
bacteria suspended in the agar.
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Table 1: Properties of the WttB [14] [16] and the Agar [12] [13].
Parameter Symbol WttB Value Agar Value
Initial temperature [ºC] T0 37 37
Constant temperature [ºC] Tc [-] 37
Room temperature [ºC] Ta 23 23
Thermal conductivity [W/m·K] k 2.13 0.6
Density [kg/m3] ρ 6042 4182
Heat capacity [J/kg·K] c 427 998
Convection coefficient [W/m2·K] h 11 [-]
Absorption coefficient [m−1] α −3.851 · 103 + 14.54 · T 2
Reflection coefficient [%] R 0.19 [-]

3.2 Nanoparticles properties

Thermal capacity It has been shown experimentally that the thermal capacity
of nanoparticles differs from the macroscopic thermal capacity [19]. This vari-
ation of the physical properties can be explained due to the effects of surface
atoms [20].

The atoms of a material can be classified as surface atoms, these being the atoms
corresponding to the exterior boundary of the material, and interior atoms, these
being the atoms enveloped by the surface atoms. In a macroscopic material, the
layer of surface atoms is negligible with respect to the interior atoms. However,
for a thin layer of nanoparticles, the surface atoms constitute a significant per-
centage of the total material atoms.

This classification of atoms is relevant because the amplitude of vibration of
surface atoms with temperature is greater than that of interior atoms, while the
frequency of vibration of surface atoms is less than that of interior atoms. These
properties can be determined theoretically using the Debye temperature [21].

Due to the vibrational properties of the surface atoms, they increase the thermal
capacity of the material. Therefore, the smaller the size of the nanoparticles, the
greater the percentage of surface atoms, and the greater the thermal capacity
with respect to the macroscopic case. [22].

An experimental fit equation is purposed in [20] for the relation between the
thermal capacity of nanoparticles cn and macroscopic materialcm.

cn = cm

(
1−K0

d

D

)
(4)

where K0 = −0.5 is a fiting constant, D is the diameter of the nanoparticles y
d is the atomic diameter. This equation is represented in Figure 2.
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Fig. 2: Comparison between thermal capacity of nanoparticles cn and macro-
scopic material cm as a function of nanoparticles diameter.

Thermal Conductivity Thermal conductivity in metals occurs due to the
transport of energy by free electrons. Its values is constant for macroscopic ma-
terials. In the case of nanoparticles, according to [20], [23], [24] thermal conduc-
tivity kn can be calculated using the following equation

kn =
km(1− δ 4f0d

ηD )1/2

1 + Rk

D km(1− δ 4f0d
ηD )1/2

(5)

where km is the thermal conductivity of the macroscopic material, D is the
diameter of the nanoparticle, d = 0.2822 nm [25] is the diameter of the atoms
of the material, δ ∈ (0, 1) is the relaxation factor, f0 = 1 is the shape factor,
η = 0.68 is the atomic packing fraction and Rk is the kapitza resistance [26], [27].
Numerical values are particularized to spherical copper nanoparticles. With this
numerical values, equation (5) can be approximated to

kn ≃
km

1 + Rk

D km
(6)

where for any value of δ, variations between equations (5) and (6) are less than
0.1%.

Equation (6) is represented in the Figure 3, where copper thermal conductivity
is km = 385 W/(m/K) [25] and Kapitza resistance Rk = 0.3 · 10−9 (m2K)/W. It
can be observed how as the diameter of the nanoparticles increases, the thermal
conductivity approaches its macroscopic value.

Density. Nanoparticles density is considered equal to the density of the material
on a macroscopic scale [25].

Surface Plasmon Resonance. Plasmons, in the field of matter physics, refer
to the collective vibration of free electrons in metals. These vibrations possess a
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Fig. 3: Thermal conductivity of copper nanoparticles as a function of their di-
ameter.

distinct frequency and thus, plasmons can be categorized as an excitation of a
bosonic quasi-particle [29].

Plasmons may be excited by electromagnetic radiation, such as coherent irra-
diation from a laser [30], [31], [32], [33]. However, the effects of this excitation
become negligible in metallic materials on a macroscopic scale, since the excita-
tion, present on the surface of the metal, is dispersed inside it.

If the size of the nanoparticles is much smaller than the wavelength of the inci-
dent photons, the excitation does not propagate, thus obtaining what is known
as localized surface plasmons. The resulting plasmonic oscillation is distributed
over the entire volume of the nanoparticle [34].

When the frequency of the photons of the incident irradiation corresponds to
the resonance frequency of the described system, the plasmons enter into reso-
nance, generating very energetic oscillation peaks that result in the absorption
of a large part of the intensity of the incident light.

This effect is known as surface plasmon resonance, and from an optical point
of view, it produces peaks in the absorption coefficient of metallic nanoparticles
for the characteristic resonance frequency of each metal [29], [30], [32]. In the
case of copper nanoparticles, this frequency corresponds to a wavelength of 580
nm [32], [33].

In the mathematical model proposed by this work, due to the coupling between
the optical problem and the thermal problem, increases in the absorption coef-
ficient imply an increase of the effect from the external heat source term in the
heat equation, which induces localized temperature increases in the nanoparticle
layer, an effect that is desirable for the control of the bacterial population by
thermal methods.

Absorption Coefficient. The absorption coefficient of a material can be de-
termined experimentally [18] by measurements of the extinction coefficient ϵ and
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the absorbance A. These measurements are made using solutions of nanoparti-
cles in liquids with known optical properties, in containers whose properties are
also known, such as quartz.

Absorbance determines the amount of light intensity that is absorbed by a sam-
ple solution and is defined by equation (7)

A = −log10
(
I

I0

)
(7)

where I0 is the incident intensity and I is the intensity measured after the light
passes through the solution.

The correlation between extinction coefficient and absorbance is determined by
equation (8)

A = ϵML (8)

where M is the molar concentration or molarity of the solution and L optical
path length.

Absorption and extinction coefficients correlation is known

α =
4πϵ

λ
(9)

where λ is the incident wavelength.

And finally we can relate the absorbance and the absorption coefficient com-
bining equations (2), (7) and (9)

α = 2, 303
A

L
(10)

Using the experimental measurements presented in [33] to determine the rela-
tionship between absorbance and temperature, as well as measurements of the
extinction coefficient and absorbance for different diameters of nanoparticles [32];
an expression of α(T ) can be obtained, for irradiations at the characteristic fre-
quency of copper corresponding to a wavelength of 580 nm, with a linear depen-
dence on temperature (R2 = 0.975), for copper nanoparticles particularized to
a diameter of 20 nm

α(T ) = 2.61 · 107 + 5655.6 · T (11)

where it has been taken into account the hypothesis that the functional de-
pendence of the absorption coefficient of the nanoparticles with the temperature
does not vary significantly for different diameters, and the value of the absorption
coefficient of a nanoparticle can be extended to a set of nanoparticles. Dispersion
phenomena are not considered.
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4 Computational results

The numerical results of this work must verify the pre-set objectives of obtaining
∆T ≥ 10 oC in the bacteria layer for bacteria anti-fouling and ∆T < 10 oC in
the agar layer representing the brain, in order to avoid neural degradation.

Table 2 shows the results of the ∆T in the bacteria layer, obtained compu-
tationally for the numerical resolution with finite elements. Intensities I2 (2W)
and I3 (3W) produce ∆T ≥ 10 oC in the bacteria layer.

Figure 4 shows the two-dimensional temperature distribution for an axisym-
metric slice of the four-layer disk. Temperature distributions obtained from the
irradiation of the laser sources I2 and I3 are compared, for the case with and
without nanoparticles (NPs). Moreover, the isotherm for ∆T = 10 oC is also
represented, so that the penetration of this ∆T into the agar layer for each case
study can be identified.

Table 3 displays the numerical values for the maximum penetration length Lpm

del ∆T = 10 oC in the agar layer. These values are measured on the axis of
symmetry, r = 0, since it is on this axis where the maximum temperatures are
reached.

Table 2: Computational results ∆T for each irradiation source for the case with
NPs. Temperature measured at the center of the upper surface of the bacterial
layer at 20 seconds.

∆T Superior Bacteria ∆T Inferior Bacteria
I1: 1 W 5.38 5.03
I2: 2 W 11.77 10.78
I3: 3 W 18.42 16.82

Table 3: Comparative of the penetration of the isotherm ∆T = 10 oC in the
agar layer for the case with and without NPs. Maximum penetration length
Lpm measured on the symmetry axis.

Without NPs Lpm [mm] With NPs Lpm [mm]
I2: 2 W 0.71 0.07
I3: 3 W 1.31 0.56



28 Mildred S., Jose Bon, M. Llamazares et al.

(a) (b)

(c) (d)

Fig. 4: Temperature distribution and isotherm of ∆T = 10 oC ((black line) for
the cases with and without nanoparticles at 20 seconds. Spatial dimensions in
mm, temperatures in oC. (a) and (b) represent the results without NPs for I2
(2W) and I3 (3W) respectively. (c) and (d) the results with NPs for I2 and I3.

5 Conclusion

The multi-layer model of the WttB implant with a thin layer of nanoparticles
has promising results with regard to reducing the penetration of increased tem-
peratures into brain tissue, due to bacterial anti-fouling procedures.
A notable reduction of the penetration of the temperature increases for the dif-
ferent laser sources studied is appreciated.
These preliminary results motivate the production of the implant with the
nanoparticle layer and experimental measurements in the laboratory, to con-
firm the theoretical properties of the nanoparticles and the thermal behavior of
the proposed configuration.
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15. J.E. Alaniz, F.G. Pérez-Gutierrez, G. Aguilar, and J.E. Garay: Optical properties
of transparent nanocrystalline yttria stabilized zirconia. Optical Materials 32(1),
62–68 (2009). https://doi.org/10.1016/j.optmat.2009.06.004

16. S. Ghosh, D. Teweldebrhan, J.R. Morales, J.E. Garay, and A.A. Balandin: Thermal
properties of the optically transparent pore-free nanostructured yttria stabilized
zirconia. Journal of Applied Physics, 106,113507 (2009). https://doi.org/10.1063/1.
3264613

17. McAdams, Williams H: Heat transmission. McGraw-Hill, New York, 1954 .
18. Nikolai V.Tkachenko: Optical Spectroscopy Methods and Instrumentations. Else-

vier B.V. 2006
19. J. Rupp and R. Birringer: Phys. Rev. B: Condens. Matter. 987, 36, 7888.
20. Shiyun Xiong, Weihong Qi, Yajuan Cheng, Baiyun Huang, Mingpu Wang, Yejun

Li: Universal relation for size dependent thermodynamic properties of metallic
nanoparticles. Phys. Chem. Chem. Phys., 2011, 13, 10652–10660 (2011).

21. C. Kittel: Introduction to Solid State Physics. John Wiley and Sons, 8th edn, 2004.
22. Wenhua Luo, Wangyu Hu, and Shifang Xiao: Size Effect on the Thermodynamic

Properties of Silver Nanoparticles. J. Phys. Chem. C 2008, 112, 2359-2369.
23. Ratan Lal Jaiswal, Brijesh Kumar Pandey: Modelling for the variation of thermal

conductivity of metallic nanoparticles. Physica B 627 (2022) 413594.
24. H.S. Yang, G.R. Bai, L.J. Thompson, J.A. Eastman: Interfacial thermal resistance

in nanocrystalline yttria-stabilized zirconia. Acta Mater. 50 (2002) 2309–2317.
25. C. Kittel: Introduction to Solid State Physics John Wiley and Sons, 8th edn, 2004.
26. R.C. Johnson, W.A. Little: Experiments on kapitza resistance. Phys. Rev. J.

Archive 130 (1963) 596.
27. J.D.N. Cheeke, B. Hebral, J. Rechard: Kapitza resistance between the transition

metals Fe, Co, and Ni and superfluid helium. J. Low Temp. Phys. 12 (3/4) (1973)
359–373.

28. Arijit Kumar Chatterjee, Ruchira Chakraborty and Tarakdas Basu: Mechanism
of antibacterial activity of copper nanoparticles. Nanotechnology 25 (2014) 135101
doi:10.1088/0957-4484/25/13/135101

29. Vincenzo Amendola: Surface plasmon resonance in gold nanoparticles: a review. J.
Phys.: Condens. Matter (2017) 29 203002

30. V. Liberman, M. Sworin, R. P. Kingsborough, G. P. Geurtsen, M. Rothschild:
Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic
nanoparticles. J. Appl. Phys. 113, 053107 (2013) https://doi.org/10.1063/1.4790798

31. Junqi Tang, Kunpeng Gao, Quanhong Ou, Xuewen Fu, Shi-Qing Man, Jie Guo,
Yingkai Liu: Calculation extinction cross sections andmolar attenuation coefficient
of small gold nanoparticles and experimental observation of their UV–vis spectral
properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
191 (2018) 513–520

32. Oleg A. Yeshchenko, Igor M. Dmitruk a, Andriy M. Dmytrukb, Alexandr A. Alex-
eenko: Influence of annealing conditions on size and optical properties of copper
nanoparticles embedded in silica matrix. Materials Science and Engineering B 137
(2007) 247–254

33. O.A. Yeshchenko: Temperature Effects on the Surface Plasmon Resonance in Cop-
per Nanoparticles. ISSN 2071-0186. Ukr. J. Phys. 2013. Vol. 58, No. 3

34. Dean J. Campbell, Younan Xia: Plasmons: Why Should We Care? Journal of
Chemical Education, Vol. 84 No. 1 January 2007, www.JCE.DivCHED.org

https://doi.org/10.1016/j.optmat.2009.06.004
https://doi.org/10.1063/1.3264613
https://doi.org/10.1063/1.3264613
doi:10.1088/0957-4484/25/13/135101
https://doi.org/10.1063/1.4790798
www.JCE.DivCHED.org


Maximum-Likelihood Expectation-Maximization
method applied to unfold neutron spectra in a

radiotherapy bunker

S. Oliver, B. Juste, R. Miró and G. Verdú
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Abstract. The Maximum-Likelihood Expectation-Maximization (MLEM)
method is an iterative computation of maximum-likelihood estimation
widely used to solve ill-posed problems. An example of this, in the field
of medical physics, is the neutron spectrum unfolding in a radiotherapy
bunker via the raw data measured with a Bonner Sphere Spectrometer
(BSS). This device consists of a central thermal neutron detector and six
high-density polyethylene spheres with different diameters. Each sphere
moderator is inserted in the detector, being sensitive to different en-
ergy neutrons. Each sphere-detector combination has a unique response
function depending on the neutron energy. The relation with neutron
spectrum, and the response function is given by the Fredholm integral
equation of the first kind. Since in the described problem the number
of measurements carried out, one for each sphere, is smaller than the
number of energy bins of the unknown spectrum, 29 bins, the problem
has an infinite number of mathematical solutions, some of them with-
out a physical sense. By this reason, the MLEM method is suitable to
obtain an accurate neutron spectrum. In this work, the neutron spectra
at different locations of a real radiotherapy bunker have been obtained
applying the MLEM with the aim to measure the neutron ambient dose
produced in a radiotherapy treatment.

Keywords: neutron spectrum, MLEM, BSS, LinAc

1 Introduction

Radiotherapy is one of the widely used therapy for cancer. These treatments con-
sist of several external beams delivered by a medical linear accelerator (LinAc),
targeted to destroy cancer cells while sparing surrounding healthy tissues. LinAcs
can generate photon and electron beams with different energies. High-energy
photons (above 8 MeV), generated when the LinAc is working above 10 MV,
can produce secondary neutrons during the treatment by photonuclear inter-
actions [1, 2]. The problem with these neutrons is that they can contribute to
the patient absorbed dose and can induce activation of different materials inside
the treatment room. These facts expose patients and radiotherapy personnel to
carcinogenic risk [3, 4], [5, 6].
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The accurate determination of the neutron spectrum is crucial due to the
strong dependence of the carcinogenic risk associated with secondary neutrons
on their energy [7]. The biological effects of ionizing radiation on the human body
are measured using the equivalent dose, which assigns a high weighting factor
(ωr) for neutrons and α particles. For neutrons, ωr values can range from 5 to
20, resulting in equivalent doses up to 20 times larger than the absorbed dose,
depending on the neutron energy. This highlights the significance of exposure
to non-negligible doses of secondary neutrons, which could pose a radiological
protection issue and impact people’s health [8].

By these reasons, the main objective of this work is to develop and validate
a methodology to unfold the neutron spectrum produced in a LinAc bunker
operating at 15 MV, at different points of interest.

2 Materials and Methods

To perform the described objective and carry out the reconstruction of the neu-
tron spectrum, the work is divided into different steps. Firstly, it is necessary
to measure the secondary neutrons produced in the points of interest using
a suitable detector. These three points consist of one meter from the LinAc’s
ISOCENTER, at the maze-room junction, and in the middle of the maze. Sec-
ondly, the detector’s response to different energies needs to be known. Finally,
it is essential to implement a mathematical algorithm to unfold the spectrum
using the previously gathered information as input. All these steps are described
throughout this section.

2.1 Bonner Sphere Spectrometer System

To be able to measure the neutron contribution, in this study, the multisphere
spectrometer used was the Bonner Sphere Spectrometer (BSS) [9]. This one
comprises six high-density polyethylene spheres with varying diameters (2, 3, 5,
8, 10, and 12 inches). At the center of these spheres, a thermal neutron detector
is placed. This detector is composed of a scintillator crystal made of lithium
iodide (6LiI-Eu) with dimensions of 4 mm in diameter and 4 mm in height. To
enhance detection efficiency, the scintillator crystal is coupled to a multiplier tube
using a Plexiglas light pipe. Since the set of spheres acts as a neutron moderator,
depending on the sphere used for measurements, neutrons from thermal energies
to hundreds of MeVs can be detected by the scintillator crystal. The complete
BSS system is shown in Fig. 1. Measurements in counts per second were obtained
for each detector-sphere combination at each point of interest inside the bunker,
with the Varian Clinac 2100C operating at 15 MV to ensure secondary neutron
production.

2.2 Monte Carlo Simulations

One of the main steps to unfold the neutron spectrum involves generating the
response function of the multisphere spectrometer. In this study, the matrix used
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Fig. 1: Picture of the BSS detector. Left, the smaller sphere inserted in the de-
tector, and right, the complete set of spheres and the bare detector.

was obtained through the use of Monte Carlo (MC) simulations in a previous
work [10], which was validated with the same found in the literature [11].

Additionally, this work involved a set of MC simulations using MCNP6.1.1
[12] with the aim to obtain the BSS measurements also via MC simulations.
On the one hand, the detailed geometry of the BSS, including the detector and
six spheres, was modeled based on manufacturer information, Fig 2. On the
other hand, the Varian Clinac 2100C was accurately modeled based on confiden-
tial blueprints provided by the company. The entire setup was placed within a
radiotherapy bunker reproducing the specific bunker at Hospital Universitari i
Politècnic La Fe de València. ANSYS SpaceClaim and Abaqus/CAE were used
for 3D modeling and meshing [13], and both the LinAc and BSS models were
validated in previous works [10,14].

Since the neutron spectrum was unfolded at three different positions within
the bunker, for each measurement point, one simulation by detector-sphere con-
figuration was carried out, measuring the neutron counts in the scintillator. For
each simulation, a photon beam of 15 MV obtained from [15], is used, reproduc-
ing the same conditions as in the experimental measurements.

2.3 Maximum-Likelihood Expectation-Maximization (MLEM)
unfolding method

The MLEM method is used in this work to unfold the neutron spectrum at
different points inside a radiotherapy bunker. This method is an iterative process
that maximizes the likelihood of obtaining the measured data when convergence
is achieved, providing an accurate neutron spectrum. It is employed in this work
with two sets of data: the neutron measurements obtained from the BSS system
experimentally or simulated, and the response function matrix for each detector-
sphere configuration.

The response function for each detector-sphere combination i, is unique, de-
noted by Ri(E) as a function of neutron energy E. The measured neutron data
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Fig. 2: One of the sphere-detector combinations meshed geometry of the BSS
system (left), and complete LinAc geometry (right) used for MC simulations.
Both systems are not on the same scale..

for each BSS moderator both of experimental data and MC simulation results, is
denoted by mi. The solution of the problem, i.e, the neutron spectrum obtained
through the unfolding process, is denoted by n(E). The relation between the
neutron spectrum and the response function is described by a Fredholm inte-
gral equation of the first kind (Eq. 1), which can be represented in matrix form
m = R · n. In this case m refers to the array of dimension i which corresponds
to each measured data of each sphere moderator; R is the linear operator corre-
sponding to the rectangular response i× j matrix where j is the energy neutron
beam, and finally, n corresponds to the unfolded neutron spectrum.

mi =

∫ E+∆E

E

Ri(E)n(E)dE (1)

The iterative form of the MLEM method is described in Eq. (2). In this
equation, the summation limits, N and J , correspond to the total number of
moderators and the total number of energy bins, respectively.

n
(
jk + 1) =

nkj∑N
i=1 rij

N∑
i=1

rij
mi∑J

b=i ribn
k
b

(2)

Then, nkb corresponds to the initial spectra, uploaded until the kth iteration;
nkj is the current spectrum uploaded in each iteration; rij represents each element
of the described response matrix and finally, mi are the experimental measure-
ments, in counts, for each detector-sphere configuration moderator. Each step of
the iteration method provides a new neutron spectrum uploading the previous
one. Finally, when the stop criteria stablished by the user is accomplished, the
MLEM gives the final unfolded neutron spectrum over a wide energy range.

3 Results

The neutron spectra were unfolded at three different positions within the radio-
therapy bunker: 1 meter from the ISOCENTER, at the maze-room junction, and
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in the middle of the maze. These results have been obtained both using experi-
mental and simulated data. For the MLEM algorithm a uniform initial spectrum
was used as input for the unfolding process. In Fig. 3, Fig. 4, and Fig. 5, the
fluence rate spectra are presented in logarithmic scale, indicating the number of
neutrons per cm2 per second as a function of energy for each measurement point,
respectively. Both point B and C spectra fit precisely for MC and measured data
with a difference less of 5% and 1% respectively. At point A, the values of the
experimentally measured data cannot be directly precisely obtained. This is due
to the problem of this detector, which is the separation of neutron and photon
events when photon fluence is extremely high compared with neutron contribu-
tion. By this reason, at point A, only the unfolded spectrum using the initial
simulated data is shown.

Fig. 3: Unfolded neutron spectrum obtained from Monte Carlo simulated data
using LinAc geometry of Varian Clinac at Hospital Universitari i Politècnic La
Fe de València, at point A.

In these figures, it can be shown that the maximum fluence is obtained at
point A, showing a fast neutron peak. Additionally, at point B the thermal
neutron peak surpasses the fast peak which shows 25 less intensity than the
same observed at A. Finally at point C, the thermal neutron peak has decreased
a factor of 7 with respect to point B.

Once the neutron spectrum has been unfolded, using the fluence-to-dose co-
efficients of the ICRP Publication 74 [16], and integrating the fluence rate over
the energy range, the total ambient dose equivalent in each point of measure-
ment was calculated. Moreover, the ambient dose equivalent was also measured
at the same points of the bunker, using an LB6411 detector designed between
Berthold and the Karlsruhe Research Center [17]. The results for the neutron
ambient dose equivalent are shown in Table 1. Take into account that, for the
same reason as in the BSS detector (the photon contribution is extremely high
compared with the neutron one), the dose equivalent cannot be measured at
point A.
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Fig. 4: Comparison between unfolded neutron spectrum obtained from experi-
mental data (dashed lines) and from simulated data (solid lines) at point B,
in facility room of Varian Clinac at Hospital Universitari i Politècnic La Fe de
València.

Fig. 5: Comparison between unfolded neutron spectrum obtained from experi-
mental data (dashed lines) and from simulated data (solid lines) at point C,
in facility room of Varian Clinac at Hospital Universitari i Politècnic La Fe de
València.

Table 1: Total Fluence Rate, Ambient Dose Equivalent H*(10) for Unfolded
Spectrum and for Measurements Using Berthold Detector at Different Locations
in Facility Room of Varian Clinac at Hospital Universitari I Politècnic La Fe de
València at Points A, B and C.

Point Total fluence (n/cm2s) H*(10) (mSv/h) unfolded H*(10) (mSv/h) Berthold

A 3.15e5 357.0 ——–
B 4.71e4 13.6 13.1
C 4.67e4 0.97 0.92
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4 Conclusions

In this study, secondary neutron spectra were obtained at three points in the
radiotherapy treatment room. A realistic simulation of a Varian Clinac emitting a
15 MV beam was performed, incorporating the BSS system geometry to calculate
counts per second for each sphere at different LinAc bunker points. Additionally,
the same counts per second were measured using the BSS system at the Hospital
Universitari i Politècnic La Fe de València. The MLEM algorithm, employing
previously validated neutron response curves, was used for spectrum unfolding.
This unfolded spectrum at three points of interest of the bunker, shows a decrease
in neutron fluence rate at greater distances from the source, with distinctive peak
variations in different locations.

The dose values obtained in this work allowed the calculation of neutron
ambient dose equivalent, consistent with experimental data measured with the
Berthold detector. The described methodology enables dose assessment at vari-
ous points in the treatment room through MC simulations, the MLEM algorithm,
and neutron responses.

Finally, although in this work, the described methodology has been applied
to the medical field and to measure the dose associated with the neutrons in
a LinAc treatment, this methodology is versatile and applicable in other radia-
tion facilities such as cyclotrons, nuclear power plants, or uranium enrichment
factories, for assessing neutron dose contribution in any region of interest.
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Abstract. This paper shows the development of a numerical analysis
model, which enables the calculation of cargo transport capacity of a
vehicle that circulates through vacuum tubes at high speed and ana-
lyzes its effectiveness in transport. The simulated transportation system
is based on the use of vehicles that move in vacuum tubes at high speed,
which is commonly known as Hyperloop, but assuming the vehicle for
cargo containers. For the specific vehicle proposed, which does not in-
clude a compressor and levitates on magnets, the system formed by the
vehicle and the vacuum tube is conceptually developed, establishing the
corresponding mathematical relationships that define its behavior. To
properly model the performance of this transport system, it has been
necessary to establish the relationships between the design variables and
the associated constraints, such as the Kantrowitz limit, aerodynam-
ics, transport, energy consumption, etc. Once the model was built and
validated, it was used to analyze how it affects the variation of the trans-
ported load (in our case number of containers), the speed of operation
and the length of the tube, with the total and specific consumption of
energy. Once the most efficient configuration was found in regard to en-
ergy consumption and transport effectiveness, the complete system was
calculated. The results obtained constitute a first approximation for the
pre-design of this transport system and the built model allows different
alternatives to be compared according to the design variables.

Keywords: High-speed Transport, Freight Transport, Sustainable Trans-
port, Electric Vehicles.

1 Introduction

The objective of this work is to develop a calculation model that could find the
best configuration of a vehicle that transports heavy goods at high speed in a
vacuum tube, and thus obtain greater energy efficiency as well as greater effec-
tiveness in the operation of transport. The process consists of defining a case
study under behavioral hypotheses, parameterizing the problem through the be-
havioral equations corresponding to each of the physical phenomena that occur,
and applying the analysis to a predesign of a vehicle that simulates the opera-
tion in real conditions. Once the behavior relations of the system are established,
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the energy consumption, the performance of the system, as well as the verifica-
tion of the Kantrowitz limit, are determined. This allows selecting the optimum
amount of load to be transported, the most suitable operating speed, and the
most appropriate tube length. Once the optimal values of these variables have
been obtained, the rest of the main characteristics of the vehicle are determined.

Regarding the type of system used for vehicle-infrastructure interaction, the
authors have considered two options for levitation: air bearings and electrody-
namic suspension (EDS). This work focuses on the latter. The vehicle does not
include a compressor to overcome the Kantrowitz limit at near-sonic speeds or
airfoils; but includes batteries in the rear of the vehicle for the control, and in the
EDS rotor. The vehicle also has a mechanical brake for immediate braking in the
event of an emergency. It is only considered cargo contained in 20-foot aluminum
Dry Van containers and each container must be placed within a single capsule.
A linear geometry has been studied, with a straight tube with zero slopes, and
which can be 500, 750 or 1,000 km long between origin and destination.

Due to work limitations, other issues such as technical and economic fea-
sibility, control loops, stability, infrastructure, vehicle structure, heat transfer,
EDS geometry and electrical systems are out of scope and may be eligible for
additional work.

To carry out this research work, it has been necessary to review the behav-
ioral theories of the different physical phenomena involved and the extraction
of the corresponding behavioral laws: aerodynamics, electromechanics and ther-
modynamics.

The main contribution of this work is the determination of the most suitable
masses and volumes for freight transport using containers in a vehicle that trav-
els at high speed in a vacuum tube levitating on magnets. Thus, more efficient
transportation can be achieved with lower energy consumption per ton and kilo-
meter transported, and greater effectiveness in transportation by establishing
the ideal number of containers in cargo movement.

Another contribution to highlight is the analysis procedure, taking into ac-
count all of the physical conditions of the problem, and adding the restrictions
and limitations of the case to be studied. The result is the variation of the
parameters sought. In this case, for example, the optimal weight and volume,
which allows finding the most appropriate alternative to the proposed criterion,
is aimed at the minimum energy consumption. Once the analysis procedure has
been validated, the methodology is open to adding more restrictions and limita-
tions for future research work.

2 Material and methods

The methodology applied in this work follows a deductive method, in which,
through the construction of the physical problem to be solved, the behavioral
equations of the laws of thermodynamics, electromechanics and aerodynamics
are applied to the specific case proposed. By establishing the determined limits,
the comparison variables that allow an analysis based on the variation of param-
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eters are obtained, and the variation of parameters enables the acquisition of an
optimal design. First, the problem to be solved is defined, consisting of establish-
ing the behavior laws of a vehicle levitating on magnets in a vacuum tube to be
transported at high speed, for which a series of hypotheses have been proposed.
These hypotheses are fundamental to delimit the model of the high-speed trans-
port system, which is defined by the physical equations of its main subsystems:
aerodynamics, electromechanics and thermodynamics. Second, these equations
are interrelated by auxiliary equations that are introduced later, building a sys-
tem of equations that is solved by mathematical equation solving software. This
software allows to solve the system of equations after configuring the input data.
The parameters can be varied in the case study: the calculation is carried out
by varying one parameter at a time.

2.1 Hypothesis

The following hypotheses have been regarded:

1. Subsonic speed.
2. Ideal gas theory, since the compressibility factor is around 1 under the system

working conditions.
3. Isentropic compression as the vehicle moves and the air is compelled to flow

into the annulus.
4. The boundary layer does not separate from the vehicle.
5. Both acceleration and deceleration are held constant.
6. The frontal area of the EDS magnets is negligible with respect to the annulus

area (figure 2 (a)).
7. Any lateral forces generated by the propulsion part of the EDS are not con-

sidered. These are inherently stabilizing and low with respect to the propul-
sion force (Pellicer, 2019).

8. Active power losses in the EDS are modeled with a single stator resistance
(figure 2 (c)).

9. The average power dissipated by the EDS drag is considered one third of the
maximum during acceleration and braking. This is because the power dissi-
pated first increases and then decreases with speed (Flankl, 2018). If it were
linear with speed, then the average power would be half of the maximum,
but in this case, it is less due to that decrease.

10. The diameter needed to accommodate the load is equal to the diameter of
the circumference surrounding a container (figure 2 (b)).

3 Calculation

The calculation process consists of three parallel branches that conflate at a
point:

a) In the left branch, the power dissipated by aerodynamic drag is computed.
For that, the speed of the vehicle and its thermodynamical data are entered. At
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that given speed, the tube diameter is calculated so that the Kantrowitz limit is
prevented. According to the blockage ratio, the power dissipated by aerodynamic
drag is computed.

b) In the middle branch, the onboard batteries which feed the rotor of the
linear motor are dimensioned. Their dimensioning comes from evaluating their
energy density and their discharge time, which depends on the total travel time.
In turn, the total travel time relies on the operating speed, acceleration and
deceleration of the vehicle through kinematics relations.

c) In the right branch, the power needed to propel and lift the vehicle is
calculated. This calculus highly relies on the number of containers (that equals
the number of capsules in the vehicle) and their individual masses, which depend
on the filling factor of each container. These data determine how much mass
is lifted and propelled and, thus, the power needed for that. These branches
conflate in order to determine the energy consumption of the vehicle. This way,
the energy consumption is linked to the mass transported and to the operating
speed, which allows finding relations between the mass flow and the energy
needed to maintain that mass flow (always considering that only one vehicle, the
one that is to be optimized, is using the tube). The calculation process is shown
in the next flow diagram, which shows how the different equation blocks are
interrelated. Equation blocks referring to the main subsystems (aerodynamics,
electromechanics and thermodynamics) are represented with a bolded contour,
while auxiliary equation blocks are represented with a normal contour. The final
block is represented with a doubly-bolded contour:

In this way, it is ensured that the behavior laws of the vehicle inside the
tube are fulfilled under all the requirements and considering all the starting
hypotheses, with which the physical phenomenon is completely characterized.
Once the problem has been formulated, and the behavior equations and the
input data are introduced into the software, the software finds the solution to
the system of equations. Finally, the design parameters, such as the transported
mass, the operating speed, and the length of the tube, are varied according to the
simulation procedures. The results (the new results of the system of equations)
are obtained in relation to the energy consumption of the transport operation.

3.1 List of abbreviations

The list that contains the abbreviations used in the following sections can be
consulted in Annex 1 (Table 3).

3.2 System definition

System drawings

Aerodynamics The high-speed transport system runs inside a tube, and this
is like a vehicle that runs inside a tunnel, whose drag coefficient increases as a
result of the tunnel effect. According to Melis (2001), the relation between the
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Thermodynamics

Kantrowitz limit

Kinematics

BatteriesAerodynamics

Aerodynamic drag

Energy consumption

Transportation

Electromechanics

Levitation and 
propulsion

Operating speed Operating speed, (de)acceleration 
and energy density

Total mass
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for propulsion 
and levitation

Total travel
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Power dissipated by
aerodynamic drag

Tube diameter

Number of containers 
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Fig. 1: Flow diagram of the calculation process. Source: Own elaboration.

Fig. 2: (a) Cross-sectional drawing of the tube in front of the vehicle and its
profile. (b) Cross-sectional drawing of the tube and the vehicle, near the rear,
and its axial section. (c) Electrical model for EDS. Source: Own elaboration..
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drag coefficient inside and outside is expressed as follows (Eq. 1). To calculate
the coefficient of drag inside, the same reference includes this formula (Eq. 2).
Furthermore, the outside drag coefficient is related to the moment section of the
boundary layer (Eq. 3):

Tf =
CDt

CDext

(1)

CDt =

(
CDext + β

(
∆1

Af

)2
) 1− ci

v

1− β
(

∆1

Af

)
2

(2)

CDext
= 2

∆2

Af
(3)

A relationship exists between the boundary layer momentum section and
the boundary layer displacement section. To find this relationship, it must be
taken into account that the boundary layer will be laminar, as can be verified
by calculating both the local and the global Reynolds number with some data
extracted from Pellicer (2019) (first model):

ReDc =
ρtvDc

µt
(4)

ReLc =
ρtvLc

µt
(5)

ReDc
=

1.18 · 10−3 · 1,2203.60 · 1.34
1.80 · 10−5 = 29, 769.51 (6)

ReLc
=

1.18 · 10−3 · 1,2203.60 · 25
1.80 · 10−5 = 555, 401.23 (7)

(8)

Where 1.80 · 10−5 Pa · s is the dynamic viscosity for dry air at 20 ºC and
100 Pa (the variation of viscosity with pressure is neglectable for such a low
pressure) (Schlichting, 2017). 25 m is approximately the length of the capsule,
which can be gathered from Pellicer (2019): The passenger capsule levitates on
28 air bearings, 14 on each side and 1.5 m long each (21 m in total, to which
other parts as the nose and nozzle are added). With respect to 1.18 ·10−3 kg/m3,
this is the air density and comes from the ideal gas equation. It can be noted that
the local Reynolds is small and not significant, whilst the global can be proper to
a laminar boundary layer, since the transition from laminar to turbulent occurs
somewhere between 5 × 105 and 1 × 106 for a flat plate. Assuming that it is
always laminar for the high-speed transportation system, von Karman results
can be used to relate the momentum thickness to the displacement thickness
through the layer thickness. The process is shown below, after collecting the
proper information from Schlichting (2017) (Eqs. 6 – 7). The function u(y

′′
)

could be linear, parabolic, polynomial, etc. As a first approximation, the speed
profile is assumed to be linear (Eq. 8). After integrating, the following is obtained
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(Eqs. 9 – 10):
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∫ δ
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U
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δ

2
(12)

θ =
δ

6
(13)

After having gathered all this information, the aerodynamic analysis is solved.
Only geometric relations and the generic formula for calculating the drag force
remain, which involves density, speed, and frontal area in addition to the drag
coefficient inside the tube. All the formulas are shown in the next sections.

Electromechanics For the study of the EDS, the works consulted are Frankl
(2018), Abdelrahman (2018) and Lever (1998). The EDS used for this high-
speed transportation system is very similar to the one used for maglev vehicles,
although in maglev vehicles wheels are needed at low speeds because there is
not enough induction magnetic field to levitate. The traditional EDS can be
modeled as a LIM (linear induction motor) for levitation and as an LSM (linear
synchronous motor) for propulsion. In order to eliminate the need for wheels, the
LIM is replaced by an LSM when applying EDS to the high-speed transportation
system, where the rotor will be mounted on the pod (short rotor) and the stator
on the tube (Abdelrahman, 2018). These two expressions are taken from this
work (Eqs. 11 – 12). The article by Flankl (2018) contains explanations and
formulae for levitation and the drag force generated by the EDS operation.
Below the formulae can be found, although expressed a little differently (Eqs. 13
– 15). Furthermore, the next equations from Lever (1998) have been used in the
analysis (Eqs. 16 – 18), where the number three indicates the number of phases
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of the motor:

ηEDS =
Fxv

Fxv + 3I21R
(14)

cosφ =
Fxv + 3I21R

3V1I1
(15)

Fz = mtotg (16)

FDEDS
= CDEDS

F z (17)

PDEDS
= FDEDS

v (18)

P = 3V1I1 cosφ (19)

3E1I1cosγ0 = Fxv (20)

Q = 3V1I1 sinφ (21)

(22)

The electrical model for EDS is shown in Lever (1998). This model is based
on the LSM, which can be seen as a rotary synchronous motor rolled out flat.
Subsequently, a resistance and a reactance are used at the stator (on the left).
At the model air gap, electric power is equated to mechanical. On the right, a
damper and a spring are joined to represent mechanical losses. However, for a
first parameter estimation, it is preferable to remove the damper and the spring,
and to consider that all active power losses occur in the stator resistance (figure
2 (c)). Other electrotechnical equations have been used to analyze the EDS.
Furthermore, to calculate the thrust required and the power input at the end of
acceleration (maximum losses), Newton’s second law has been applied.

Thermodynamics Lastly, to derive the Kantrowitz limit main expression,
three basic thermodynamics equations were utilized: Mass flow conservation,
Mach number definition, sound speed in an ideal gas, ideal gas law, and isen-
tropic relations for pressure and temperature. The subscript 1 represents the air
state variables or associated ones before the air flows into the annulus and the
subscript 2 represents the contrary. According to Mattingly (1996), most of the
aforementioned formulae may be consulted. The main expression to analyze the
Kantrowitz limit phenomenon is derived by combining Eqs, 19 – 25 (subscripts
for i = 1, 2). The complete process can be found in Bar-Meir’s work (2013) and
its outcome is Eq. 26:
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ṁi =ρiAivi (23)

ṁi =constant (24)

vi =asiMi (25)
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√
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Note: ρ1 = ρt, A1 = At, A2 = Acc, v1 = v. See also figure 2.

3.3 Final equation block

The final block of the model is the energy consumption block. This block comes
from Pellicer (2019) and relies on the results of the rest of the blocks (figure
1). So the aerodynamics (Eqs. 1 – 10), electromechanics (Eqs. 11 – 18) and
thermodynamics (Eqs. 19 – 26) blocks are interrelated through the auxiliary
equation blocks (Eqs. 27 – 57, presented in Table 4 in Annex 1). The final block
equations are:

3.4 Software choice

Once all the equations have been obtained, it is necessary to process them in an
equation solver program. Due to the large number of equations and relations that
had to be implemented, only software capable of processing the entire volume
of data in an agile way has been considered. After considering several options
(Mathematica, Matlab and Engineering Equation Solver), Engineering Equation
Solver (Klein, 1993) has been chosen as it is used in other models that involve
thermodynamical equations (Tirmizi, 2012). The specific version the results were
obtained with is Engineering Equation Solver Professional V9.457-3D (EES).
The chosen program, besides solving equations, can create parametric tables
and graphs derived from those equations.

3.5 Simulation procedures

The objective is to analyze the capacity of this transport system and compare
different alternatives based on their efficiency. However, there is a lot of input
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Table 1: Final equation block.

data to enter before getting the results, that is, the final values of all the output
variables involved.

First, input data are chosen. They may come from different sources: refer-
ences, calculations, and optimizations with the aid of EES tables and graphs in
most cases. Then, they are entered in the program.

Once those data have been selected and entered, the number of containers,
speed and tube length can be chosen. The choice of these essential factors that
are based on the less important factors that we have just selected and introduced
is what this work focuses on because they lead to the results. All these results
will be obtained for a single vehicle using one of the two tubes, which will be
optimized. This vehicle enters the tube, travels through it, and leaves it at the
exact instant that a new vehicle begins its journey. After optimization, the results
will be extrapolated to a regular transport flow, including the dispatch frequency
of the vehicles.

Starting with the number of containers, the most interesting plot to choose
is the IE − I−1

C plot (several curves, one for each number). When selecting it,
two factors are key:

1. IE or in other words, specific energy consumption to payload, must be the
lowest possible.

2. IC or cargo throughput per unit time must be the highest possible. However,
its inverse is used on the plot so that optimal points will fall around the
lower-left corner. Seen from another perspective, it can be stated that it is
important to minimize the time required to send the payload.

In order to obtain one curve instead of one point with coordinates (I−1
C , IE)

for every number of containers, these two basic variables could be altered: a)
Speed, which is a relevant factor, as both IE and IC strongly depend on it, so a
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range of speed values is included as input to make the plot. Were the range not
included, then the outcome would be one point with coordinates (I−1

C , IE) for
every number of containers. The range for a high-speed transportation system
without a compressor is 700-1,000 km/h, as will be demonstrated later. b) Tube
length. As defined in the beginning, it can take one out of three discrete values:
500, 750 or 1,000 km. IE and IC also depend on this to a great extent. Speed is
chosen because the IE − I−1

C curves as a function of speed will be helpful when
selecting it afterward. Choosing the tube length would not have been useful later
because the consumption per unit length would not have been represented. This
leads to the choice of speed. IE − I−1

C curves are used for this, but Kantrowitz
limit results are crucial inasmuch as aerodynamics play a huge role. The speed
chosen must comply with the following requirements: Working conditions under
the Kantrowitz limit while keeping the lowest possible Dt, low IE and high IC
(or low I−1

C , its counterpart). Plus, it should leave maglev speeds behind by
a sufficient margin. The most suitable graph for presenting Kantrowitz limit
results is the Dt − v curve. This way, the speed selected will be the one that
optimizes IE , Ic and Dt.

After this, the tube length is selected out of the three figures available. This
time, IE is no longer useful on its own. This is because IE is energy divided by
mass, being Ev the factor escalating linearly with Lt (through tv according to
equations 26 – 33 and 53). Were IE utilized, then 500 km would be optimal for
minimizing both IE and I−1

c , but energy per unit distance would not even have
been considered. Energy per unit distance is relevant because it contributes to
determine operation costs. With that said, the unknown e′t is chosen instead of
IE , resulting in e′t− I−1

c curves. e′t may be seen as the combination of IE and E′
t

and the optimal length will be the one that minimizes both of them, this being
interpreted as pursuing low transportation costs and low operation costs.

Finally, the optimal values for the number of containers, speed and length
are introduced. Once the program has compiled everything, the window with
the final values will appear on the screen, arranged in alphabetical order.

3.6 Input data

Firstly, 20’ aluminum Dry Van containers have the following characteristics:
6.058 m (≃20’) for length (Lcont), 2.438 m for width, 2.591 m for height, 2,180 kg
for tare (mtare), 28,300 kg for maximum load (mcarga). According to the width
and height of the container, the parameter Dcont is 3.558 m, using Pythagoras’
theorem. After setting the dimensions of the specified container, the rest of the
input variables are given values:

1. a1 = a2 = 14.72m/s2 (1.5 g). This is because cargo withstands higher accel-
erations than passengers as there are not any discomfort issues.

2. ci and g are constants and the former is null (there is not any wind flowing
inside the tube).

3. ebat, R, γ and ηbat were extracted from references.
4. The rest are optimal (Pellicer, 2019).
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Table 2: Table 2. Input variables with their respective units and their values to
their right.

Variable Value

a1 [m/s2] 14.72
a2 [m/s2] 14.72
CDEDS [ϕ] 3·10-3
CDext [ϕ] 0.60
ci [m/s] 0 (const.)
Dcont [m] 3.558

ebat [Wh/kg] 225
g [ms2] 9.81 (const.)
Lcont [m] 6.058
mcarga [kg] 28,300
mEB [kg] 800*

m′
EDS [kg/m] 32

m′
est [kg/m] 500
mLi+ [kg] 400*
mtara [kg] 2,180
pt [Pa] 250

R [J/kg ·K] 287
R1 [Ω] 8
Tt [

oC] 20
γ [ϕ] 1.40
γo [o] 15
δlc [m] 0.04
δrc [m] 0.05

ηbat [p. u.] 0.90
ηEDS [p. u.] 0.73

τ [%] 30
φ [o] 30
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Note: mLi+ = 350 kg for ncont = 1 and 50 kg is added per each additional
container. mEB = 750 kg for ncont = 1 and 250 kg is added per each additional
container. 350 and 750 kg have been used to start the series.

4 Results

4.1 IE − I−1
C curves

Fig. 3: IE − I−1
C curves for Lt = 750 km and for 1 – 5 containers (abbreviated as

cont. or conts.). Results from Table 5 (annexed).

In conclusion, when increasing ncont there is an improvement in both IE and
IC , which is clearly smaller after every increment. When adding one container
for the first time, payload (associated with capacity) grows by roughly 30 t. This
is a 100 % growth, from 30 to 60 t. When adding one container again, payload
grows by roughly 30 t with respect to the initial 60. This is a 50 % increase.
The next time there is a 33 % increase (30/90) and finally 25 % (30/120). This
results in a slowing-pace increase in IC (the contrary for I−1

C ).
Besides this, the dead weight also grows increment by increment: mLi+ and

mEB grow as established in table 5, m′
est and m′

EDS multiply a longer length
(ncontLc according to equation 46) and mtara ncont according to the same for-
mula. This and the slowing-pace improvement in capacity explains the slowing-
pace decrement in IE , which is mainly governed by the ratiomtot/(mcarga

∑i=ncont

i=1 fi)
(the difference between the numerator and denominator is the deadweight) and
by losses independent from mtot (chiefly PDtv and Ebat) divided by payload. In
the end, ncont is set to 5 because the improvement from 5 to 6 will be predictably
tinier and over dimensioning the system is undesirable.

4.2 Dt − v curve

Analyzing figure 4, it can be deduced that the zone of interest goes from 700 to
800 km/h (Dt around 9 m), these beings the reasons: 9 m is suitable considering
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Fig. 4: Dt − v curve. Results from Table 6 (annexed).

that Dc is 3.658 m, so that blockage will be small (0.16 or 16 % at 728 km/h
according to table 6); speeds below 700 are near maglev speeds and speeds above
800 yield a Dt rising at a higher rate.

The relevant information provided by figure 3 concerning v is that the ends
of any speed range should be avoided: Lowest speeds yield a low IE , but low IC
(or high I−1

C ). By contrast, the highest speeds imply the contrary. This means
that the optimal speed will be near the center of the speed interval. With this
being said, v is chosen as 750 km/h.

4.3 e′t − I−1
C curves

Fig. 5: e′t − I
(
C − 1) curves at v = 750 km/h and for 1 – 5 conts. Results from

Table 7 (annexed).
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In contrast to the IE − I−1
C curves, now e′t has replaced IE . It must be noted

that e′t can be calculated as E′
t divided by mtot or IE divided by Lt. This means

that all of the tendencies observed before are still valid. Now there are two
additional tendencies, explained next.

In the first place, E′
t decays as Lt augments, as table 7 proves. This is due

to the fact that accelerating the vehicle requires the provision of a high amount
of kinetic energy and this energy is better used for longer routes. Secondly, IC
worsens as Lt grows. It is simple to understand this by reviewing equation 49:
As Lt grows, ttot does too and IC decreases (or I−1

C increases). Shorter routes
allow a higher throughput because for the same period of time more containers
can be dispatched.

After having seen the different trends involved, it can be concluded that the
best option is Lt = 750 km. 750 km (point/run 14 above in figure 5 and table 7)
is the only one that optimizes e′t (associated with both IE and E′

t) and IC . 500
km (point/run 13) improves IC and its counterpart but worsens e′t, while 1,000
km (point/run 15) has the contrary effect.

5 Conclusions

Through the mathematical modeling of a novel high-speed transport system
based on the use of vacuum tubes, the most convenient design has been obtained
which allows an effective freight transport operation, which is also efficient in
terms of energy. This effective freight transport operation complies with all of
the technical requirements and with all the limitations of the physical problem.
The model allows taking into account all the equations involved by the elec-
tromechanical, aerodynamic, and thermodynamic laws present in the definition
of the problem. By introducing boundary conditions and starting hypotheses,
the model allows an analysis of parametric variation to be carried out. In the
case presented, the optimal number of containers that can be transported at
high speed with the lowest possible energy consumption can be obtained as a
result, in a technically feasible model. As a continuation of the research work,
the next steps to be carried out will consist of the consideration of solving the
problem with the restrictions and difficulties that come with using a tube with
different curvatures as infrastructure, and with the existence of slopes along the
route.
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Annex 1 
 
 
 
 

 

Table 3. List of abbreviations. 

Abbrevia-
tion 

Definition Unit 
(SI) 

Ac Pod cross-sectional area m2 
Acc Annulus area m2 

Af 
Frontal area projected on a 

plane normal to the tube m2 

At Tube cross-sectional area m2 
a1 Acceleration m · s−2 
a2 Deceleration m · s−2 
as Sound speed m ∙ s−1 

CDEDS EDS drag coefficient ϕ 

CDext 
Drag coefficient outside the 

tube ϕ 

CDt 
Drag coefficient inside the 

tube ϕ 

ci 
Wind speed induced inside 

the tube m ∙ s−1 

Dc  Capsule diameter m 

Dcarga 
Diameter needed to fit the 

cargo m 

Dcont 
Diameter of the circumfer-

ence surrounding one contain-
er 

m 

Ddesp Displacement diameter m 
Dmovto Momentum diameter m 

Dt Tube diameter m 

E1 
Phase voltage at the stator 

after losses V 

Eac 
Energy consumed during 

acceleration J 

Ebat 
Energy consumed by the 

batteries J 

Egen 
Energy generated during 

deceleration J 

Et′ 
Total energy consumed per 

unit length J · m−1 

Ev 
Energy consumed through-

out the travel at the speed v J 

ebat 
Battery stored energy per 

unit mass J ∙ kg−1 

et′  
Total energy per unit length 

and payload mass 
J · m−1

· kg−1 
FD Drag force N 

FDEDS EDS drag force N 

Fx 
Propulsion force (along x 

axis) N 

Fz 
Levitation force (along z ax-

is) N 

fi 
Filling factor of each con-

tainer (for 𝑖𝑖 = 1, 2, … , 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
ϕ 

g Gravity acceleration m · s−2 
I1 Stator line current A 
Ic Transport capacity per unit kg ∙ s−1 

time (capacity index) 

Ie 
Energy consumption per 

payload mass (energy index) J · kg−1 

Lac Acceleration length m 
Lc Length of one capsule m 

Lcont Length of one container m 
Ldec Deceleration length m 

Lt 
Tube length (same as the 

route one) m 

Lv Travel length at the speed v m 
M Mach number ϕ 

mcarga 
Maximum cargo of one 

container kg 

ṁcc 
Mass flow through the an-

nulus   kg ∙ s−1 

mEB Emergency brakes mass kg 

mEDS
′  

EDS magnets mass per 
unit length   kg · m−1 

mest
′  

Structural mass per unit 
length   kg · m−1 

mLi+ Batteries mass   kg 

ṁt 
Mass flow through the tube 

(relative to vehicle) kg ∙ s−1 

mtara Tare of one container kg 
mtot Vehicle total mass kg 

ncont 
Number of containers 

transported ϕ 

P1 Input power to EDS W 

Pav 
Power dissipated by run-

ning resistance 
W 

PD 
Power dissipated by aero-

dynamic drag W 

PDEDS  
Power dissipated by EDS 

drag W 

Px 
Power really used for pro-

pulsion W 

pt Pressure inside the tube Pa 

pot  
Total pressure inside the 

tube Pa 

R 
Constant for a certain ideal 

gas 
J ∙ kg−1

∙ K−1 
   

Rav Vehicle running resistance N 
R1  Stator resistance Ω 
Tf Tunnel factor   ϕ 

Tt 
Temperature inside the tu-

be K 

Tot 
Total temperature inside 

the tube K 

tac Acceleration time s 
tdec Deceleration time s 
tdes Batteries discharge time s 
ttot Total route time   s 
tv Travel time at the speed v s 

V1 
Phase input voltage to the 

stator V 

v Vehicle operating speed m ∙ s−1 
X1 Stator reactance   Ω 
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β Blockage ratio   ϕ 
γ Adiabatic index ϕ 
γo Angle between E1 e I1 rad 
Δ1 Displacement section m2 
Δ2 Momentum section m2 

δ∗ 
Boundary layer displace-

ment thickness m 

δlc  Pod longitudinal thickness m 
δrc Pod radial thickness m 

ηbat Battery charging efficiency ϕ (p. u. ) 
ηEDS EDS efficiency   ϕ (p. u. ) 

θ 
Boundary layer momentum 

thickness m 

ρt Density inside the tube kg · m−3 

τ 
Percentage of battery dura-

tion over travel time ϕ (%) 

φ EDS power angle rad 

 

  



 
Table 4. Auxiliary equation blocks. 

Block Equation Left – side varia-
ble [SI unit] Variable definition Equation 

number 

Kantrowitz limit 

𝐴𝐴𝑐𝑐𝑐𝑐 = 𝐴𝐴𝑐𝑐 − 𝐴𝐴𝑐𝑐 Acc [m2] Annulus area 27 

𝐴𝐴𝑐𝑐 =
𝜋𝜋
4
𝐷𝐷𝑐𝑐2       At [m2] Tube cross-sectional 

area 
28 

𝐴𝐴𝑐𝑐 =
𝜋𝜋
4
𝐷𝐷𝑐𝑐2       Ac [m2] Pod cross-sectional area 29 

𝐷𝐷𝑐𝑐 = 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 2𝛿𝛿𝑐𝑐𝑐𝑐        Dc [m2] Capsule diameter 30 
�̇�𝑚𝑐𝑐 = �̇�𝑚𝑐𝑐𝑐𝑐𝑚𝑚á𝑥𝑥       ṁt [kg ∙ s−1] Mass flow through the 

tube (relative to vehicle) 
31 

Aerodynamic 
drag 

𝐹𝐹𝐷𝐷 =
1
2
𝜌𝜌𝑐𝑐𝑣𝑣2𝐴𝐴𝑓𝑓𝑇𝑇𝑓𝑓𝐶𝐶𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 

FD [N] Drag force 32 

𝑃𝑃𝐷𝐷 = 𝐹𝐹𝐷𝐷𝑣𝑣       PD [W] Power dissipated by aer-
odynamic drag 

33 

𝐴𝐴𝑓𝑓 = 𝐴𝐴𝑐𝑐 Af [m2] Frontal area projected on 
a plane normal to the tube 

34 

𝛽𝛽 =
𝐴𝐴𝑐𝑐
𝐴𝐴𝑐𝑐

       β [ϕ] Blockage ratio 35 

∆2=
𝜋𝜋
4

(𝐷𝐷𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐
2 − 𝐷𝐷𝑐𝑐2)       ∆2 [m2] Momentum section 36 

𝐷𝐷𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 = 𝐷𝐷𝑐𝑐 + 2𝜃𝜃       Dmovto [m] Momentum diameter 37 
𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝑐𝑐 + 2𝛿𝛿∗       Ddesp [m] Displacement diameter 38 

Batteries 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = �1 +
𝜏𝜏

100
� 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐       tdes [s] Batteries discharge time 39 

Kinematics 

𝑡𝑡𝑐𝑐𝑐𝑐 =
𝑣𝑣
𝑎𝑎1

 tac [s] Acceleration time 40 

𝑡𝑡𝑑𝑑𝑑𝑑𝑐𝑐 =
𝑣𝑣
𝑎𝑎2

       tdec [s] Deceleration time 41 

�̅�𝑣 =
𝑣𝑣
2 (𝑡𝑡𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑑𝑑𝑑𝑑𝑐𝑐) + 𝑣𝑣𝑡𝑡𝑚𝑚
𝑡𝑡𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑑𝑑𝑑𝑑𝑐𝑐 + 𝑡𝑡𝑚𝑚

       
v� [m · s−1] Mean speed of the vehi-

cle 
42 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 =
𝐿𝐿𝑐𝑐
�̅�𝑣

       ttot [s] Total route time 43 

𝑡𝑡𝑚𝑚 = 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑡𝑡𝑐𝑐𝑐𝑐 − 𝑡𝑡𝑑𝑑𝑑𝑑𝑐𝑐        tv [s] Travel time at the speed 
v 

44 

𝐿𝐿𝑐𝑐𝑐𝑐 =
𝑣𝑣2

2𝑎𝑎1
       

Lac [m] Acceleration length 45 

𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐 =
𝑣𝑣2

2𝑎𝑎2
       

Ldec [m] Deceleration length 46 

𝐿𝐿𝑚𝑚 = 𝐿𝐿𝑐𝑐 − 𝐿𝐿𝑐𝑐𝑐𝑐 − 𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐        Lv [m] Travel length at the 
speed v 

47 

Levitation and 
propulsion 

𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎1 + 𝑅𝑅𝑐𝑐𝑚𝑚    Fx [N] Propulsion force (along x 
axis) 

48 

𝑃𝑃𝑥𝑥 = 𝐹𝐹𝑥𝑥𝑣𝑣       Px  [W] Power really used for 
propulsion 

49 

𝑅𝑅𝑐𝑐𝑚𝑚 = 𝐹𝐹𝐷𝐷 + 𝐹𝐹𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸        Rav [N] Vehicle running resistan-
ce 

50 

𝑃𝑃𝑐𝑐𝑚𝑚 = 𝑅𝑅𝑐𝑐𝑚𝑚𝑣𝑣       Pav [W] Power dissipated by run-
ning resistance 

51 

φ = sin−1 �
𝑋𝑋1𝐼𝐼12 + 𝐸𝐸1𝐼𝐼1𝑠𝑠𝑖𝑖𝑛𝑛𝛾𝛾𝑐𝑐

𝑉𝑉1𝐼𝐼1
�        

φ [rad] EDS power angle 52 

𝑃𝑃1 =
𝐹𝐹𝑥𝑥𝑣𝑣
𝜂𝜂𝐸𝐸𝐷𝐷𝐸𝐸

       P1  [W] Input power to EDS 53 

Transportation 

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿𝑐𝑐(𝑚𝑚𝑑𝑑𝑑𝑑𝑐𝑐
′ + 𝑚𝑚𝐸𝐸𝐷𝐷𝐸𝐸

′ ) +
𝑚𝑚𝐿𝐿𝑖𝑖+ + 𝑚𝑚𝐸𝐸𝐸𝐸 +
𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑ 𝑓𝑓𝑖𝑖

𝑖𝑖=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒
𝑖𝑖=1 +𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

mtot [kg] Vehicle total mass 54 

𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Dcarga [m] Diameter needed to fit 
the cargo 

55 

𝐿𝐿𝑐𝑐 = 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 2𝛿𝛿𝑙𝑙𝑐𝑐        Lc [m] Length of one capsule 56 

𝐼𝐼𝑐𝑐 =
𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑ 𝑓𝑓𝑖𝑖

𝑖𝑖=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒
𝑖𝑖=1

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
     (Note 1) 

Ic [kg ∙ s−1] Transport capacity per 
unit time (capacity index)  

57 

  
  

 
1 This is not the traditional capacity equation. This equation (3.57) has been specifically engineered for this problem. It assumes that only one 

vehicle is using the tube at a time, the one which is to be optimized. 



 

The following table contains the unknowns that were given values to obtain the graphs. v is given four values: 700, 800, 
900 and 1,000 km/h. The rest of the input data was compiled by the program as well. It should be noted that all of the 
power systems are predesigned for the maximum possible payload (𝑓𝑓𝑖𝑖 = 1 for i = 1, 2, …, 5) because it is the worst-
case scenario for the EDS and the power system:  

Table 5. Unknowns given values to obtain the plot and output variables, bolded. 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 is for consultation and 𝐼𝐼𝐶𝐶, 𝐼𝐼𝐸𝐸 for the curves.  

Run 
ncont  

[ϕ] 
 

f1 
[ϕ] 

f2 
[ϕ] 

f3 
[ϕ] 

f4 
[ϕ] 

f5 
[ϕ] 
 

v 
   [km/h] 

mLi+ 
   [kg] 

mEB 
     [kg] 
 

𝐦𝐦𝐭𝐭𝐭𝐭𝐭𝐭   
[𝐤𝐤𝐤𝐤] 

 

 𝐈𝐈𝐂𝐂 
    [𝐭𝐭/𝐡𝐡] 

𝐈𝐈𝐄𝐄 
[𝐤𝐤𝐤𝐤𝐡𝐡/𝐭𝐭] 

𝐈𝐈𝐂𝐂−𝟏𝟏 
[𝐡𝐡/𝐭𝐭] 

1 1 1 0 0 0 0 700 350   750 34,845 26.32 24.11 3.80·10-2 

2 1 1 0 0 0 0 800 350 750 34,845 30.05 25.46 3.33·10-2 

3 1 1 0 0 0 0 900 350 750 34,845 33.77 27.19 2.96·10-2 

4 1 1 0 0 0 0 1,000 350 750 34,845 37.47 29.36 2.67·10-2 

5 2 1 1 0 0 0 700 400 1,000 68,891 52.65 19.29 1.90·10-2 

6 2 1 1 0 0 0 800 400 1,000 68,891 60.10 20.58 1.66·10-2 

7 2 1 1 0 0 0 900 400 1,000 68,891 67.54 22.15 1.48·10-2 

8 2 1 1 0 0 0 1,000 400 1,000 68,891 74.94 24.01 1.33·10-2 

9 3 1 1 1 0 0 700 450 1,250 102,936 78.97 17.68 1.27·10-2 

10 3 1 1 1 0 0 800 450 1,250 102,936 90.16 18.95 1.11·10-2 

11 3 1 1 1 
 

1 

0 0 900 450 1,250 102,936 101.31 20.46 9.87·10-3 
 

12 3 1 1 1 0 0 1,000 450 1,250 102,936 112.41 22.23 8.90·10-3 

13 4 1 1 1 1 0 700 500 1,500 136,986 105.29 16.88 9.50·10-3 

14 4 1 1 1 1 0 800 500 1,500 136,986 120.21 18.14 8.32·10-3 

15 4 1 1 1 1 0 900 500 1,500 136,986 135.08 19.62 7.40·10-3 

16 4 1 1 1 1 0 1,000 500 1,500 136,986 149.89 21.33 6.67·10-3 

17 5 1 1 1 1 1 700 550 1,750 171,027 131.62 16.40 7.60·10-3 

18 5 1 1 1 1 1 800 550 1,750 171,027 150.26 17.65 6.66·10-3 

19 5 1 1 1 1 1 900 550 1,750 171,027 168.84 19.12 5.92·10-3 

20 5 1 1 1 1 1 1,000 550 1,750 171,027 187.36 20.80 5.34·10-3 



In the table below, only the unknown v is given values. This is because the rest of the 
values are either constants or optimized ones. The lower limit is 500 km/h, a speed 
reachable by state-of-the-art maglevs or even high-speed vehicles. The upper one is 
1,222 km/h, around the 1,220 km/h proposed by Pellicer (2019). At 20 ºC and with 
𝛾𝛾 = 1.40 and 𝑅𝑅 = 287 𝐽𝐽

𝑘𝑘𝑐𝑐·𝐾𝐾
 , 𝑎𝑎𝑑𝑑 = 1,235.53𝑘𝑘𝑚𝑚/ℎ (by means of equation 1), which is 

slightly superior to 1,222 km/h and means that even if the speed were that, the vehicle 
would not break the sound barrier and the first hypothesis would still be true:  

Table 6. At left, values given to v. At right, the output values for the variables 𝑀𝑀, 𝐷𝐷𝑡𝑡 and 𝛽𝛽, 
bolded. 

Run 
v 

[km/h] 
 

 𝐌𝐌 
 [𝛟𝛟] 

 

 𝐃𝐃𝐭𝐭 
 [𝐦𝐦] 

 𝛃𝛃 
 [𝛟𝛟] 

1 500 0.40 6.05 3.65·10-1 

2 538 0.44 6.40 3.27·10-1 

3 576 0.47 6.78 2.91·10-1 

4 614 0.50 7.22 2.57·10-1 

5 652 0.53 7.71 2.25·10-1 

6 690 0.56 8.28 1.95·10-1 

7 728 0.59 8.94 1.68·10-1 

8 766 0.62 9.70 1.42·10-1 

9 804 0.65 10.61 1.19·10-1 

10 842 0.68 11.69 9.78·10-2 

11 880 0.71 13.02 7.90·10-2 

12 918 0.74 14.66 6.23·10-2 

13 956 0.77 16.76 4.76·10-2 

14 994 0.80 19.52 3.51·10-2 

15 1,032 0.84 23.33 2.46·10-2 



 

16 1,070 0.87 28.89 1.60·10-2 

17 1,108 0.90 37.78 9.37·10-3 

18 1,146 0.93 54.24 4.55·10-3 

19 1,184 0.96 95.00 1.48·10-3 

20 1,222 0.99 364.88 1.01·10-4 

 
 
 



The following table is a variation of table 5. Here, the 𝐿𝐿𝑐𝑐  column has substituted the v 
column and there are five fewer runs because 𝐿𝐿𝑐𝑐  adopts three values for each number 
of containers (15 rows in total): 

Table 7. Input columns, similar to those of table 5 and output columns (bolded). 𝐸𝐸𝑡𝑡′  and 𝐼𝐼𝐸𝐸 are 
for reference and 𝑒𝑒𝑡𝑡′  and 𝐼𝐼𝐶𝐶 serve to elaborate the curves. 

Run 
ncont  

[ϕ] 
 

f1 
[ϕ] 

f2 
[ϕ] 

f3 
[ϕ] 

f4 
[ϕ] 

f5 
 

[ϕ] 
 

Lt 
     [km] 

mLi+ 
   [kg] 

mEB 
     [kg] 
 

    𝐄𝐄𝐭𝐭′ 
  

[kWh/k ] 

         𝐈𝐈𝐄𝐄 
       

kWh/t] 

       𝐞𝐞𝐭𝐭′ 
         

kWh/tk ] 

 𝐈𝐈𝐂𝐂 
 [𝐭𝐭/𝐡𝐡] 

 𝐈𝐈𝐂𝐂−𝟏𝟏 
      [𝐡𝐡/𝐭𝐭] 

1 1 1 0 0 0 0 500 350   750 1.07 18.86 3.77·10-2 42.20 2.37·10-2 

2 1 1 0 0 0 0 750 350 750 0.93 24.74 3.30·10-2 28.19 3.55·10-2 

3 1 1 0 0 0 0 1,000 350 750 0.87 30.62 3.06·10-2 21.16 4.73·10-2 

4 2 1 1 0 0 0 500 400 1,000 1.73 15.28 3.06·10-2 84.40 1.18·10-2 

5 2 1 1 0 0 0 750 400 1,000 1.50 19.90 2.65·10-2 56.38 1.77·10-2 

6 2 1 1 0 0 0 1,000 400 1,000 1.39 24.53 2.45·10-2 42.33 2.36·10-2 

7 3 1 1 1 0 0 500 450 1,250 2.39 14.08 2.82·10-2 126.60 7.90·10-3 

8 3 1 1 1 0 0 750 450 1,250 2.07 18.29 2.44·10-2 84.57 1.18·10-2 

9 3 1 1 1 
 

0 0 1,000 450 1,250 1.91 22.50 2.25·10-2 63.49 1.58·10-2 

10 4 1 1 1 1 0 500 500 1,500 3.05 13.49 2.70·10-2 168.80 5.92·10-3 

11 4 1 1 1 1 0 750 500 1,500 2.64 17.48 2.33·10-2 112.76 
 

8.87·10-3 

12 4 1 1 1 1 0 1,000 500 1,500 2.43 21.48 2.15·10-2 84.65 1.18·10-2 

13 5 1 1 1 1 1 500 550 1,750 3.72 13.13 2.63·10-2 211.01 4.74·10-3 

14 5 1 1 1 1 1 750 550 1,750 3.21 17.00 2.27·10-2 140.95 7.09·10-3 

15 5 1 1 1 1 1 1,000 550 1,750 2.95 20.87 2.09·10-2 105.81 9.45·10-3 
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Abstract. Although mortality due to breast cancer has significantly
decreased in recent years, the incidence continues to increase, making
screening programs crucial. In these programs, mammograms are col-
lected from women over 40-45 years of age, which are then assessed by
radiologists. The most relevant image biomarker of the risk of developing
breast cancer is dense tissue, but its evaluation is time-consuming and has
a subjective component. Approaches based on Machine Learning would
reduce the analysis time; still, the subjective component challenges auto-
matic methods to deal with the imperfect supervision problem. Moreover,
different mammographic devices and acquisition protocols may influence
the image and its analysis. In such a way, a conscious validation of au-
tomated technologies becomes critical.

Keywords: Deep Learning, Breast Cancer, Digital mammographies,
Dense Tissue segmentation

1 Introduction

Breast Cancer (BC) is among the most frequent in women worldwide [1, 2].
In recent decades, mortality has decreased, but exceptions are still observed in
countries without early detection policies [3]. Among others, the decrease in
fertility rates, the increment of the use of hormonal menopausal therapy or oral
contraceptives, and the reduction of breastfeeding time are factors that influence
the increasing incidence rates in developed countries [4]. This way, screening
programs remain vital in the fight against this pathology.

Breasts are mainly composed of fat and dense tissue, and breast density is
consistently associated with the risk of developing breast cancer [5], [6]. Breast
density assessment in screening programs is the front line in the war against
the disease. The evaluation of mammographies is, beyond time-consuming [7],
an imperfect supervision problem from a data science view because of the lack
of a ground-truth [8,9] what directly challenges artificial intelligence approaches
to deal with this task. Another thing that challenges these approaches is the
variability of the images depending on the acquisition device and protocols [10].
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In our previous work [11], we designed a model (CM-YNet) to deal with these
two concerns. The model uses different specialists’ opinions to build the ground
truth to train the system. Besides inferring the dense tissue in a mask-based
approach, replicating the working of DM-Scan [12], a parametric model branch
estimates the values needed to interact with the dense tissue mask. After two
conventional validations with promising results, this document shows the results
of an experiment involving three radiologists. We hypothesize that one specialist
will agree with our model as much as agrees with two other specialists in a blind
way.

2 Background

The objective is to validate a model exhaustively to segment the dense tissue in
digital mammographies. The main challenges of this task are the differences in
the images among acquisition devices and the existence of inter and intra-reader
variability [13,14]. To understand the scope of this communication, this section
describes: (1) the datasets used for each of the stages of the technology to be
validated and (2) a summary of our previous work covering the main features
and results of the model (CM-YNet) [15].

2.1 Datasets

Three datasets were considered in the framework of this work. The first dataset
was used to train and make a conventional validation of the model. The second
was used for external validation, and the images originated from another loca-
tion. Finally, the third dataset was used to carry out the three-blind validation
that gives its name to this communication.

– D1. A total of 3340 images from cranio-caudal and mediolateral oblique
projections of the breasts of 1785 women were used to train and validate the
model. The mammograms were acquired from 11 centers of the Valencian
screening program, covering devices from 6 different vendors. Two radiolo-
gists segmented all these images.

– D2. A set of 381 images from the cranio-caudal projection of different
women. Only cranio-caudal projection was used to reduce variability in the
validation. The images were randomly extracted by our partner Institut Hos-
pital del Mar d’Investigacions Mèdiques (IMIM). The acquisition period of
the images was selected to obtain 283 out of 381 mammograms from old
devices with lower quality making the segmentation task more challenging.
Two specialists also segmented these mammographies.

– D3. A new set of 500 cranio-caudal projections were extracted from IMIM
to carry out the exhaustive validation of the model. To ensure the model
is validated covering a wide range of devices (and then image quality), the
extraction period was fixed to 2011-2021. Two radiologists also segmented
these mammograms.
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Figure 1 shows the distribution of the D3 images according to the year and
device vendor of acquisition. Our previous work [11] details the datasets D1 and
D2.

Fig. 1: Distribution of the mammograms according the year and acquisition ven-
dor.

2.2 CM-YNet

The CM-YNet [11], whose architecture is shown in Figure 2, is a Deep Learning
(DL) model that automatically infers dense tissue in digital mammographies.

Fig. 2: CM-YNet architecture. The first branch models the dense tissue ground
truth using the confusion matrix of the different labelers. The last branch models
a parametric approach allowing potential users to interact with the mask.
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To measure the model’s goodness, we use the DICE score [15], which ranges
between 0 and 1 and measures the matching between two segmentation masks.
The more similar the two masks are, the closer to 1 is the DICE score. Since
this is an “imperfect supervision problem” with the opinion of two specialists,
we compare the DICE between the two specialists’ masks to the DICE of the
output of our model against the mask of the more similar specialist (there is
no way to state which radiologist’s mask is better). The main contributions and
results are the following:

1. The images were processed to reduce variability among different acquisition
devices. Besides, each image was segmented by two experienced radiologists.

2. The model’s training used 70% of the D1 images, covering 11 different ac-
quisition centers and six different vendors. The results in the rest of the D1
images suggested the generalization capability of CM-YNet. See Table 1.

3. An external validation of the model was carried out with the images of D2.
These images were acquired from another location, and then the acquisition
devices and configuration differed from those of D1. The results in Table 1
confirm the model’s performance.

4. Given the existence of variability in the specialists’ opinion, the last branch
of the model tries to simulate a parametric approach [16] that would enable
the option of interacting with the segmentation area.

Dataset Center Id #images R1 vs. R2 CM-YNet (param.) CM-YNet (mask)

D1 01 96 079 ± 0.16 0.75 ± 0.19 0.81 ± 0.11
D1 02 96 0.79 ± 0.14 0.81 ± 0.15 0.83 ± 0.13
D1 04 34 0.75 ± 0.17 0.74 ± 0.20 0.83 ± 0.08*

D1 05 80 0.64 ± 0.17 0.81 ± 0.16 0.84 ± 0.10
D1 07 14 0.88 ± 0.15 0.73 ± 0.18 0.82 ± 0.14
D1 10 156 0.77 ± 0.16 0.79 ± 0.15 0.85 ± 0.10*

D1 11 140 0.82 ± 0.12 0.84 ± 0.10 0.87 ± 0.07
D1 13 60 0.78 ± 0.12 0.82 ± 0.13 0.86 ± 0.11
D1 18 20 0.74 ± 0.14 0.80 ± 0.13 0.86 ± 0.08*

D1 20 90 0.78 ± 0.16 0.78 ± 0.16 0.83 ± 0.12*

D1 99 58 0.79 ± 0.13 0.83 ± 0.13 0.89 ± 0.09*

D2 21 98 0.76 ± 0.14 0.82 ± 0.17 0.86 ± 0.10
D2 22 283 0.71 ± 0.22 0.72 ± 0.19 0.74 ± 0.19*

Total 1225 0.76 ± 0.17 0.73 ± 0.22 0.78 ± 0.17 0.82 ± 0.14
Table 1: Comparison of DICE scores according to the different acquisition centers.

Images from the centers 21 and 22 are from the independent IMIM dataset in which

id 22 correspond to images acquired with old devices. The highest value for each row

is highlighted in bold. * The difference between CM-YNet (mask) and ECNN is statis-

tically significant (p < 0.001).
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The results show that the model performs well for both the parametric and
mask branches. The model obtains a DICE in most devices even higher than
that obtained between the two specialists. The interpretation could be that the
radiologists usually agree more with the CM-YNet segmentation than the other
radiologist. Since the problem lacks a ground truth, the next step would be to
verify that a specialist agrees with CM-YNet as much as with another specialist,
which introduces the concept of three-blind validation that is detailed in the
following Section.

3 Three-blind validation

Once the model was trained and validated using a partition of D1, the perfor-
mance of the model was tested using an external dataset, D2. The promising
results motivated us to design an exhaustive validation in which three radi-
ologists would collaborate, the three-blind validation. The first step was the
extraction of a new dataset consisting of 500 left cranio-caudal images. These
images were labeled by two specialists (L1 and L2) and by CM-YNet, obtain-
ing a total of 1500 segmentations; moreover, 300 segmentations were duplicated
(1800 segmentations) to measure the intra-reader variability of a third experi-
enced radiologist (L3) assessing if agrees or disagrees with each of the randomly
presented segmentations.

Figure 3 shows a diagram of the experiment. This experiment allows us to
identify if our model is as good a labeler as any other specialist, making CM-
YNet target of becoming a powerful tool in the day-to-day of the practitioners
of the screening programs.

Fig. 3: Stage 1 corresponds to the labeling stage, and Stage 2 is the “blind-
validation”.
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3.1 Results and discussion

The 300 duplicated images to analyze the intra-observer variability demonstrate
the consistency of L3, as can be seen in the confusion matrix of Figure 4. L3
only showed inconsistency in 23 out of the 300 segmentations, thus the results
of the validation can be considered robust.

Fig. 4: The confusion matrix shows the L3 agreement of the 300 duplicated seg-
mentations. The inconsistency rate was 7.67%.

Figure 5 shows the percentage of concordance between L3 and the labelers:
L1, L2 and CM-YNet. The agreement of L3 with L1 and L2 is similar, and
significantly better than the obtained by CM-YNet. It suggests that even though
the DICE score, in mean, of the mask of a specialist segmentation and CM-YNet
segmentation is very high, there must be some artifact in the automatic model
segmentations that makes L3 disagree more with CM-YNet than with the other
specialists.

Fig. 5: Comparison of L3 agreement rate with L1, L2 and CM-YNet labelers.
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The Breast Imaging Reporting and Data System (BIRADS) [17] of the Amer-
ican College of Radiology tries to standardize the way mammographies are read.
The BIRADS proposes categorizing density into four classes, from almost fatty
breasts to extremely dense ones. Although the last recommendations suggest
not only the quantity of dense tissue but also other features such as shape or
position influence the risk of developing breast cancer, there is no doubt that
almost fatty breasts and those extremely dense are the easiest to read [18]. In
this sense, we expected L3 to disagree more with our model in the images that
are more difficult to read. We analyze the DICE score of our model against L1
and L2, splitting the results by the quartile of the density read by the specialists
as seen in Table 2.

L1 vs L2 L1 vs. CM-YNet L2 vs. CM-YNet Closest vs. CM-YNet
PDL1-Q1 0.688± 0.208 0.470± 0.159 0.578± 0.191 0.593± 0.180
PDL1-IQR 0.799± 0.132 0.749± 0.107 0.779± 0.105 0.807± 0.087
PDL1-Q4 0.873± 0.087 0.873± 0.069 0.837± 0.092 0.887± 0.062
PDL2-Q1 0.754± 0.195 0.511± 0.180 0.542± 0.170 0.575± 0.166
PDL2-IQR 0.798± 0.147 0.741± 0.138 0.810± 0.082 0.823± 0.079
PDL2-Q4 0.809± 0.141 0.849± 0.096 0.813± 0.096 0.873± 0.067

Table 2: Comparison of the DICE score of the 500 validation images split by the DICE

score quartile of CM-YNet against the labelers L1 and L2. PDLi means Percent Density

reader Li, Q1 represents the first quartile, IQR is the interquartile range, and Q4 is

the fourth quartile.

Contrary to the hypothesis, the model has a lower DICE in the less dense
breasts, which might suggest that some kind of artifact in these images is influ-
encing the results. After a visual review of the mammograms, we hypothesize
that the identification of the breast could be improved by eliminating areas such
as the pectoral muscle, axilla, or abdomen, which, due to their composition, are
brighter and could be considered dense tissue by the automatic model as can be
seen in Figure 6.

Fig. 6: Visual impact of considering external artifacts in dense tissue segmenta-
tion.
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Under this hypothesis, we propose improving the identification of the breast,
which is an image preprocessing before applying the CM-YNet model [11]. This
preprocessing does not contemplate the existence of pectoral muscle and armpit
in cranio-caudal images nor considers the presence of the abdomen in any breast
projection. Several approaches have arisen to deal with this task since the CM-
YNet article’s publication, among them the “Segment Anything” Model [19,20]
stands out. After the correct automatic breast detection in mammographies,
the three-blind validation should be repeated to assess the improvement in the
results, making CM-YNet an excellent candidate for decision support in breast
cancer screening programs.

4 Conclusions

The incidence of breast cancer, the existence of screening programs to control
the pathology, and the lack of standardization in mammogram reading make im-
portant the emergence of tools to help practitioners in their work. The CM-YNet
model provides a robust way to quantify the dense tissue in digital mammogra-
phies, with the added value of being possible to modify the segmentation thanks
to its parametric branch. The model obtained excellent results in two indepen-
dent conventional validations. What motivated us to carry out a more exhaustive
verification, the “three-blind validation”, to answer the question, ”Is our model
as good a labeler as a radiologist?”. The poorer performance of CM-YNet in the
images with the less dense breasts has suggested that it may not be a problem in
the segmentation of the dense tissue but in the appearance of bright elements in
the mammogram that have nothing to do with the breast tissue. The previous
suggests a need to improve breast detection by excluding areas of no interest
and to re-conduct the validation outlined in this document.
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(♭) Universidad Europea de Valencia,

Paseo de la Alameda 7, 46010 València, Spain

Abstract. A novel approach is presented in this study, proposing a
method for effectively performing scatter and random correction of list-
mode data within a simulated PET ring system, based on machine learn-
ing algorithms. Using positional and energetic information from both
photons stored in the detector we are able to classify and discard non-true
coincidences in order to enhance image quality. Two machine learning
algorithms have been tested, based on decision trees and neural networks
respectively, and lead to high accuracies in the classification task. A sig-
nificant reduction in the number of scattered and random coincidences
is confirmed. To assess the improvement in image quality, several im-
age quality metrics were investigated. Root Mean Square Error (RMSE)
exhibited a decrease, while Peak Signal-to-Noise Ratio (PSNR) showed
an increase in both corrected images. These findings collectively indicate
higher image quality and improved image contrast resulting from the
correction process.

Keywords: Machine learning, Positron Emission Tomography, Scatter
correction, Random correction.

1 Introduction

Positron emission tomography (PET) is a medical imaging technique that can be
used to visualize the metabolic and biological function of the human body. This
imaging modality is commonly used to diagnose and monitor the treatment of
cancer, heart disease, and neurological disorders, among other medical uses. The
performance of quantitative measurements with this technique requires a careful
understanding of the imaging process and all sources of error that distort the true
physiological information under study. One such source of error in PET image
reconstruction is the presence of scattered and random coincidences, leading to
a loss of image contrast and inaccurate quantification of activity. To address this
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issue and enhance the overall image quality, it is essential to identify and remove
these scattered and random coincidences. We propose the use of machine learning
algorithms for this task, using positional and energetic information from both
photons in the coincidence as input data. Once the algorithms are trained and
tested on new data, we are able to identify each event and discard the randoms
and scattered ones before the reconstruction of the list-mode dataset to improve
image quality.

2 Materials and Methods

2.1 Simulation

In our work, we simulated a PET scanner based on the real system SIEMENS
Biograph 6 TruePoint [1] using the software GATE [2] (GEANT4 Application
for Tomographic Emission), a toolkit for Monte Carlo simulations in medical
physics. This detector consists of three block rings of 421 mm scanner radius,
with each ring consisting of 48 blocks with 4 x 4 x 20 mm3 LSO crystals resulting
in a 162 mm axial and 585 mm transaxial field-of-view (FOV) respectively. A
Jaszczak-like phantom is placed in the center of the FOV, with six inserted
spheres with different diameters in a cylinder as hot regions. An energy window
of 350-650 keV and a time coincidence window of 5 ns were chosen.

Fig. 1: PET System Simulation: Siemens Biograph TruePoint with Jaszczak
phantom.

2.2 Supervised Machine Learning: Classification

We propose a new approach for performing the correction of scattered and ran-
dom coincidendes in the detector. Using energy and interaction position of both
photons in the coincidence obtained in the simulation as input features, we ap-
ply Machine Learning algorithms to discard non-true coincidences and enhance
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signal from background. In this framework, we perform a supervised binary clas-
sification, where we label each coincidence as ‘True”, if it is a signal coincidence,
or “False”, if it is a scatter or random coincidence.

The data were split into 80% for training and 20% for testing. Information
regarding to the interaction position in x, y and z axes and energy from both
photons given by the simulation are used as input data. The label of each coinci-
dence (True or False) used in the training stage is obtained from GATE and will
be predicted in the testing stage. Once the algorithms were trained and tested,
they are applied to a new simulation with the same characteristics.

In order to classify data coming from simulation and based in previous stud-
ies [3] on the feasibility of machine learning algorithms for this task, we have
implemented two machine learning algorithms using the Python libraries XG-
Boost [4] and Scikit-learn [5], which we refer as:

– Extreme Gradient Boosting (XGB): A decision tree-based ensemble algo-
rithm.

– Neural Network (NN): A feedforward artificial neural network with 2 hidden
layers (input-hidden-hidden-output).

2.3 Image Reconstruction

After the successful training and testing of the algorithms, they are subsequently
applied to a new simulation with identical characteristics to ensure consistency
and reliability of the correction process. Upon correcting the new dataset, the im-
ages are reconstructed using the CASToR (Customizable and Advanced Software
for Tomographic Reconstruction) software [6] with an Maximum Likelihood Ex-
pectation Maximization (MLEM) algorithm. To validate our correction method,
several metrics are used in the assesment of the image quality and are calculated
comparing the measured and corrected reconstructed images to the ideal image
(benchmark using only true coincidences and excluding all scattered and random
coincidences). The chosen metrics are defined as:

– Root mean squared error (RMSE):

RMSE =

√√√√ 1

N

N∑
n=1

(u(n)− utrue(n))2 (1)

– Peak signal-to-noise ratio expressed in dB (PSNR):

PSNR = 10 · log10

(
max(utrue(n))

2∑N
n=1(u(n)− utrue(n))2

)
(2)

where u denotes reconstructed image, utrue denotes ideal image, max(utrue)
denotes the maximum value of intensity of the ideal image. This metrics were
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calculated on a volume-of-interest (VOI) defined by the voxels occupied by the
ideal image, with n indicating the voxel index and N the total number of voxels.

RMSE approaches to zero when reconstructed and ideal image are more identical
with respect to voxel difference inside the VOI. Consequently, PSNR increases
beacuse RMSE decreases. In the absence of noise, both images are equal, and
thus the RMSE is zero and the PSNR is infinite. Then a lower RMSE and higher
PSNR generally indicates that the reconstruction is of higher quality.

3 Results

Once trained, our models were used to classify the coincidences in the new sam-
ples and discard coincidences labeled as False, in order to reduce scatter and
random fraction and enhance the true coincidence rate in our dataset. Table 1
presents the results, showcasing a substantial reduction in the number of scat-
tered and random coincidences, while the majority of signal events were pre-
served. However, a minor portion of true coincidences was misclassified.

Algorithm True Scatter Random
Raw Counts 4112118 2937868 316324
% of dataset (55.82%) (39.88%) (4.29%)

XGB Corrected 3931065 913719 25817
% of dataset (80.71%) (18.76%) (0.53%)

NN Corrected 3948644 924378 26141
% of dataset (80.60%) (18.87%) (0.53%)

Table 1: Scatter and random reduction for the proposed algorithms.

Once the datasets are corrected, the measured, corrected and ideal images
are reconstructed (Fig. 2) and the quality metrics are calculated using the ideal
image as reference. Values for the quality metrics are shown in Table 2. The re-
sults demonstrate that the corrected images exhibit a notable decrease in RMSE
and an increase in PSNR compared to the raw image. This suggests that the
corrected images possess higher quality and improved image contrast.

4 Conclusion

We have successfully validated a method for scatter and random correction of
PET images prior to image reconstruction. This innovative approach relies on
binary classification through supervised machine learning algorithms applied to
list-mode data. In our experimental study, both the XGBoost (XGB) and Neural
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(a) a) Raw (b) b) XGBCorrected

(c) c) NNCorrected (d) d) True

Fig. 2: Reconstructed central slices of the Jaszczak phantom for iteration 24 of
a) Raw measured image, b) XGB corrected image, c) NN corrected image and
d) True image.

Network (NN) algorithms demonstrated similar performance, effectively achiev-
ing a substantial reduction in the number of scattered coincidences (from 40%
to 19%) and random (from 4% to 0.5%) coincidences. Improvement of image
quality has been assesed with decreasing RMSE and increasing PSNR of both
corrected images with respect to the measured one.

The proposed algorithms successfully contribute to reducing scatter and ran-
dom coincidences, thereby enhancing the accuracy and reliability of image re-
construction in PET, offering potential advancements in nuclear medicine for
improved diagnostic capabilities and research outcomes. Machine learning tech-
niques show up as a powerful alternative in performing PET image corrections.
At the moment this algorithm has been tested only at simulation level, with
next step being application to real PET data, and compare with state-of-the-art
correction algorithms.
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Abstract. The behavior of the neutrons inside a nuclear reactor is de-
termined by the neutron transport equation. This equation demands high
computational resources to solve it without drastic approximations. In
this work, the Simplified Double PN (SDPN ) approximation is derived.
This approximation reduce the neutron transport equation to a system of
diffusion-like equations. Preliminary numerical results suggest that when
strong spatial heterogeneities are present, SDPN equations obtain more
accurate results than the diffusion approximation or the Simplified PN

equation of the same order with less computational time.

Keywords: Neutron Tansport,Double PN equations

1 Introduction

The behavior of a nuclear reactor is described by the neutron distributions in the
reactor as a function of position, energy, and time. Their behavior is modeled
by the neutron transport equation [3].

1

υ

∂Ψ

∂t
(r⃗, E, Ω⃗, t) = - Ω⃗ · ∇⃗Ψ(r⃗, E, Ω⃗, t)−Σt(r⃗, E, t)Ψ(r⃗, E, Ω⃗, t)

+

∞∫
0

dE′
∫

(4π)

dΩ′Σs(r⃗, E
′ → E, Ω⃗′ · Ω⃗, t)Ψ(r⃗, E′, Ω⃗′, t)

+
1

keff

χp(E)

4π

∞∫
0

νΣf (r⃗, E
′, t)Φ(r⃗, E′, t)dE′

(1)
For an entire reactor core without spatial homogenization, the solution of the

neutron transport equation require enormous computational resources. In this
way, approximations to these equations are must be used. The neutron diffusion
approximation provides accurate enough results at a reasonable computational
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cost for traditional nuclear reactors. More accurate approximations as the dis-
crete ordinates, method of characteristics, spherical harmonics, etc; have to be
considered when novel fuel types and setups are analyzed.

A less computational demanding approximation is the a simplified formula-
tion for the PN equations, known as the Simplified PN equations (SPN ). This
equation relies on the expansion of the angular flux in terms of Legendre poly-
nomials, where the neutron flux moments are assumed continuous. However, the
presence of heterogeneous materials give rise to discontinuous angular fluxes and
motivate the introduction of the Double PN approximation. In this work, the
Simplified Double spherical harmonics equations is studied.

The rest of this work is organized as follows. Firstly, the PN equations and
the Simplified PN equation are explained. Secondly, the Double PN and its sim-
plifications are introduced. Then, preliminary numerical results on a highly het-
erogeneous problem are presented. Finally the main conclusion of the paper are
summarized.

2 PN equations

To develop the spherical harmonics approximation (PN equations), our starting
point is the neutron transport equation for a slab geometry,

µ
d

dx
ψg(x, µ) +Σtg(x)ψg(x, µ)−

G∑
g′=1

∫ 2π

0

dφ′
∫ +1

−1

Σg→g′

s (x, µ0)ψ (x, µ0) dµ
′

=
1

2

χg

keff

G∑
g′=1

νg′Σfg′(x)

∫ +1

−1

Σg′ (x, µ′) dµ′(2)

We assume that the angular neutron flux can be expanded.

ψg(x, µ) =

∞∑
l=0

ϕl,g(x)

(
2l + 1

2

)
Pl(µ) . (3)

Then, the neutron transport equation:

∞∑
l=0

d

dx
ϕl,g(x)

1

2
((l + 1)Pl+1(µ) + lPl−1(µ))

+Σtg(x)

∞∑
l=0

ϕl,g(x)

(
2l + 1

2

)
Pl(µ)

=

G∑
g′=1

∞∑
l=0

(
2l + 1

2

)
Σg→g′

sl (x)Pl(µ)ϕl,g(x) +
χg

2keff

G∑
g′=1

νgΣfg′(x)ϕ0,g′(x) . (4)

where we have used the orthogonality relations for the Legendre polynomials∫ +1

−1

Pm(µ)Pn(µ) dµ =
2

2n+ 1
δm,n, (5)
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Multiplying equation (4) by Pk(µ), integrating from −1 to +1 and using the
orthogonality relation, we obtain the PN equations:

k

(2k + 1)

d

dx
ϕk−1,g(x) +

k + 1

(2k + 1)

d

dx
ϕk+1,g(x) +Σt,g(x)ϕk,g(x)

=

∞∑
g′=1

Σg→g′

sk (x)ϕk,g′(x) +
χg

keff

G∑
g′=1

νg′Σfg′(x)ϕ0,g′(x)δ0,k . (6)

This set of equations is composed of N + 1 equations with N + 2 unknowns.
This is usually solved, imposing the condition d

dxϕN+1,g = 0 as a cloure equation.
In multidimensional geometries, the derivatives with respect to x are substi-

tuted by a gradient operator (Simplified PN). In this way, a system of diffusive-
like equations are obtained. The theoretical basis for this ad-hoc approximation
equations were provided by Brantley and Larsen (2000) [1], showing that these
equations are high-order asymptotic solutions of the transport equation when
diffusion theory is the leading-order approximation, as it is the case for nuclear
systems.

3 Double PN equations

To improve the convergence in problem where the flux becomes discontinuous,
two sets of polynomials can be introduced, leading to the Double PN (DPN)
equations.

P+
l (µ) =

{
Pl(2µ− 1) if µ ≥ 0

0 if µ < 0
, P−

l (µ) =

{
Pl(2µ+ 1) if µ < 0

0 if µ ≥ 0
, (7)

This expansion allows treating the flux separately in each half-space 0 ≤ µ ≤ 1
and −1 ≤ µ < 0.

To obtain the classical Double PN equations, it is assumed that

ψl,g(x, µ) =

∞∑
l=0

(2l + 1)
(
ϕ+l,g(x)P

+
l (µ) + ϕ−l,g(x)P

−
l,g(µ)

)
.

Again, by using the orthogonality relationships in equation (4) and integrating
µ between 0 and 1, we obtain,

∞∑
l=0

d

dx
ϕl,g(x)

1

2

(
(l + 1)C+

k,l+1 + lC+
k,l−1

)
+Σtg(x)

∞∑
l=0

ϕl,g(x)

(
2l + 1

2

)
C+

k,l

=

G∑
g′=1

∞∑
l=0

(
2l + 1

2

)
Σg→g′

sl (x)ϕl,g′(x)C+
k,l +

χg

2keff

G∑
g′=1

νgΣfg′(x)ϕ0,g′(x)C+
k,0 ,(8)

where

C+
k,l =

∫ +1

0

P+
k (µ)Pl(µ) dµ . (9)



Simplified Double PN approximation 81

Now, we integrate µ between −1 and 0 and obtain the Double PN equations.

∞∑
l=0

d

dx
ϕl,g(x)

1

2

(
(l + 1)C−

k,l+1 + lC−
k,l−1

)
+Σtg(x)

∞∑
l=0

ϕl,g(x)

(
2l + 1

2

)
C−

k,l

=

G∑
g′=1

∞∑
l=0

(
2l + 1

2

)
Σg→g′

sl (x)ϕl,g′(x)C+
k,l +

χg

2keff

G∑
g′=1

νgΣfg′(x)ϕ0,g′(x)C−
k,0 ,(10)

where

C−
k,l =

∫ 0

−1

P−
k (µ)Pl(µ) dµ . (11)

We can truncate neutron flux expansion at l = 3 to obtain the Double P1 as:

ψg(x, µ) =

3∑
l=0

ϕl,g(x)

(
2l + 1

2

)
Pl(x) , (12)

and we obtain:

1

4

d

dx
ϕ0 +

1

2

d

dx
ϕ1 +

5

16

d

dx
ϕ2 +

1

2
Σ0ϕ0 +

3

4
Σ1ϕ1 − 7

16
Σ3ϕ3 =

1

2keff
Fϕ0,(13)

−1

4

d

dx
ϕ0 +

1

2

d

dx
ϕ1 − 5

16

d

dx
ϕ2 +

1

2
Σ0ϕ0 − 3

4
Σ1ϕ1 +

7

16
Σ3 =

1

2keff
Fϕ0,(14)

1

12

d

dx
ϕ0 +

1

4

d

dx
ϕ1 +

17

48

d

dx
ϕ2 +

7

24

d

dx
ϕ3 +

1

4
Σ1ϕ1 +

5

8
Σ2ϕ2 +

7

16
Σ3ϕ3 = 0 ,(15)

1

12

d

dx
ϕ0 − 1

4

d

dx
ϕ1 +

17

48

d

dx
ϕ2 − 7

24

d

dx
ϕ3 +

1

4
Σ1ϕ1 − 5

8
Σ2ϕ2 +

7

16
Σ3ϕ3 = 0 ,(16)

The odd moments can be isolated in terms of even moments, and substituted
back

−1

3

d

dx

(
Σ1
)−1

(
dϕ0

dx
+ 2

dϕ2

dx

)
+Σ0ϕ0 =

1

keff
Fϕ0 (17)

− 2

15

d

dx

(
Σ1
)−1

(
dϕ0

dx
+ 2

dϕ2

dx

)
− 1

5

d

dx

(
Σ3
)−1

(
dϕ2

dx

)
+Σ2ϕ2 = 0 (18)

This problem can be transformed into a system of diffusion-like equations by
introducing the following linear change of variables,

U1 = ϕ0 + 2ϕ2, U2 = 3ϕ2, (19)

The obtained system can be rewritten as

− d

dx

(
D

d

dx
U

)
+ AU =

1

λ
FU , (20)

where

D =

(
1
3(Σ

1)
−1

0

0 1
7(Σ

3)
−1

)
, Aij =

2∑
m=1

c
(m)
ij Σm, Fij = c

(1)
ij F, (21)
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c(1) =

(
1 − 2

3

− 6
7

4
7

)
, c(2) =

(
0 0

0 5
7

)
. (22)

To maintain the structure of diffusion-like equations in multidimensional do-
mains, we substitute the derivative with respect to x are substituted by a nabla
operator as it was done with the Simplified PN equations Then, we get a sys-
tem of diffusion-like equations that can use numerical solvers optimized for the
neutron diffusion equation.

If we truncate the flux expansion at 6th element, we get the DP2 equations.

ψg(x, µ) =

5∑
l=0

ϕl,g(x)

(
2l + 1

2

)
Pl(x) , (23)

Isolating the odd moments and making some simplifications, we obtain

−1

3

d

dx

(
Σ1
)−1

(
dϕ0

dx
+ 2

dϕ2

dx

)
+Σ0ϕ0 =

1

keff
Fϕ0

(24)

− 2

15

d

dx

(
Σ1
)−1

(
dϕ0

dx
+ 2

dϕ2

dx

)
− 3

35

d

dx

(
Σ3
)−1

(
3
dϕ2

dx
+ 4

dϕ4

dx

)
+Σ2ϕ2 = 0

(25)

− 4

63

d

dx

(
Σ3
)−1

(
3
dϕ0

dx
+ 4

dϕ2

dx

)
− 1

36

d

dx

(
Σ5
)−1

(
5
dϕ4

dx

)
+Σ2ϕ2 = 0

(26)

For the SDP2 equations, the change of variables is

U1 = ϕ0 + 2ϕ2 , U2 = 3ϕ2 + 4ϕ4 , U3 = 5ϕ4 . (27)

To obtain a system of diffusion like equations:

−∇⃗
(
D∇⃗U

)
+ AU =

1

λ
FU , (28)

The elements of the system are given by

Aij =
3∑

m=1

c
(m)
ij Σm, Fij = c

(1)
ij F ,

D =

 1
3(Σ

1)
−1

0 0

0 1
7(Σ

3)
−1

0

0 0 1
11(Σ

5)
−1


(29)

c(1) =

 1 − 2
3

8
15

− 2
3

4
9 − 16

45

− 32
33 −

64
99

256
495

 , c(2) =

0 0 0

0 5
9 − 4

9

0 − 80
99

64
99

 , c(3) =

0 0 0

0 0 0

0 0 36
55

 . (30)
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4 Numerical Results

We consider a two-dimensional one energy group nuclear system. The geometry
of this system is provided in figure 1 and it is extracted form [1]. This problem
possesses a strong spatial heterogeneity that makes that the diffusion approxi-
mation gives inaccurate results. This problem has been solved using the SDPN

and SPN approximations using the same finite element method discretization.
Numerical results for this problem are given in Table 1. Figure 2 show the

scalar neutron flux along the line y = 4.5 cm. We can see the SDP3. In this
figure, we also compare the results obtained in [2].
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Fig. 1: Geometry of the two-dimensional one energy group problem [1].

Table 1: Numerical results for one-group problem.

Approximation keff ∆keff (pcm) RMS (%)

SP1 0.776 80 2674 3.80
SP3 0.799 04 450 0.63
SP5 0.802 80 74 0.13
SP7 0.803 54 0 0.00

SDP1 0.801 61 193 0.51
SDP2 0.803 73 19 0.04
SDP3 0.804 02 48 0.10

S16 0.806 13
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Fig. 2: Scalar flux along y = 4.5 cm for one-group eigenvalue problem

5 Conclusion

In this work, the Simplified Double PN (SDPN ) approximation to the neutron
transport equation is derived. These equations are leads to a system of diffusion-
like equations. In the problem studied where strong spatial heterogeneities are
present, SDPN equations obtain more accurate results than the diffusion ap-
proximation or the Simplified PN equation of the same order.

Future works will be devoted to compare the SDPN equation in more realistic
nuclear reactor configurations. This work is part of the open source software
FEMFFUSION [4] developed at Universitat Politècnica de València. This software
can be freely downloaded at (https://www.femffusion.webs.upv.es/).
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Abstract. In this contribution, we deal with the probabilistic analysis
of the deflection of an embedded beam based on the Euler-Bernoulli’s
theory. We consider that all parameters of our model (the moment of
inertia and the Young’s modulus) are independent random variables.
Furthermore, the load acting vertically over the beam is assumed to be
described by the Brownian Bridge process. The aim of this work is to
obtain the first probability density function using the Random Variable
Transformation method. The theoretical findings will be illustrated with
numerical simulations.

Keywords: stochastic embedded beam, Brownian Bridge process, de-
flection, Random Variable Transformation method

1 Introduction

The Euler-Bernoulli’s theory is a key in structural engineering used to predict
the behaviour of beams under loading, enabling engineers to understand how ex-
ternal forces influence the beam’s deformation along its length. However, many
factors, such as variability in materials and environmental conditions, can affect
the accuracy of predictions based on this theory. This contribution will address
the extension of the Euler-Bernoulli’s theory to beams by incorporating random-
ness to the model. In this way, the analysis becomes more realistic to deal with
real-world scenarios.

We will focus on the calculation of the probability density function (pdf) of
the beam deflection using the Random Variable Transformation method (RVT),
(see [1, page 25]). The computation of the pdf is highly relevant as it allows us
to determining all the one-dimensional moments and the probability that the
solution lies on a certain interval of specific interest. In the setting of structural
mechanics, it permits calcuating the probability that the deflection of a beam
lies within a certain safety interval or analyze failure probabilities.

The static deflection of a beam can be mathematically described by the
following fourth-order differential equation [2]

d4Y (x)

dx4
=

1

EI
P (x), 0 < x < l, (1)
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where Y (x) represents the deflection curve of the beam, EI is the flexural rigidity
being E the Young’s modulus of elasticity and I the moment of inertia. We will
consider that these two parameters are independent random variables. Here, l
is the length of the beam and P (x) is the force acting vertically on the beam
at the spatial point x, which is described by P (x) = P0 + B(x), where P0 is
a deterministic parameter and B(x) is the Brownian Bridge process defined by
means of the Wiener process [3], W (x), as

B(x) =W (x)− x

l
W (x), 0 ≤ x ≤ l. (2)

In this work, specifically, we are going to study the deflection of a beam embedded
at both ends. This can be written via the following boundary conditions

Y (0) = 0, Y (l) = 0, (null deflection in the embeds),

Y ′(0) = 0, Y ′(l) = 0, (null slope in the embeds).
(3)

In order to perform the stochastic analysis, we will take advantage of the
Karhunen-Loève expansion of the Brownian Bridge process

B(x) =

∞∑
j=1

√
2l

jπ
sin

(
jπ

l
x

)
ξj , (4)

where ξj are independent and indentically distributed Gaussian random vari-
ables, ξj ∼ N(0, 1).

2 Computing the first probability density function

In order to obtain the pdf, first we need to consider the approximation of B(x)
obtained by truncating at N its Karhunen-Loève expansion defined in (4). So,
the model is approximated via the following differential equation

d4Y (x)

dx4
=

1

EI

(
P0 +

∑N
j=1

√
2l

jπ sin
(
jπ
l x
)
ξj

)
, 0 < x < l,

Y (0) = 0, Y (l) = 0, Y ′(0) = 0, Y ′(l) = 0,

(5)

Second, we need to compute the stochastic solution of model (5). Integrating
four times the equation and using the boundary conditions, we obtain

Y (x) =
1

π5EI

(
π5

24
P0(l − x)2x2 + l3/2

√
2

(
π(l − x)x

(
(−l + x)

N∑
j=1

1

j4
ξj

+x

N∑
j=1

1

j4
cos (jπ)ξj

)
+ l3

N∑
j=1

1

j5
sin

(
jπ

l
x

)
ξj

))
.

(6)

Now, we fix 0 < x < l, and we apply the RVT method. In short, the RVT method
permits obtaining the pdf of a random vector V that results from mapping
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another random vector U whose pdf is known. So, taking U = (E, I, ξ1, . . . , ξN )
to obtain the pdf of V = (V1, V2, . . . , VN+2), defined by the mapping r : RN+2 →
RN+2, whose components are defined by

v1 = r1(e, i, ξ1, . . . , ξN ) = Z(x; e, i, ξ1, . . . , ξN ),
v2 = r2(e, i, ξ1, . . . , ξN ) = i,
v3 = r3(e, i, ξ1, . . . , ξN ) = ξ1,
...

...
...

...
...

vN+2 = rN+2(e, i, ξ1, . . . , ξN ) = ξN .

where Z(x; e, i, ξ1, . . . , ξN ) is given by

Z(x; e, i, ξ1, . . . , ξN ) =
1

π5ei

(
π5

24
P0(l − x)2x2 + l3/2

√
2

(
π(l − x)x

(
(−l + x)

N∑
j=1

1

j4
ξj

+x

N∑
j=1

1

j4
cos (jπ)ξj

)
+ l3

N∑
j=1

1

j5
sin

(
jπ

l
x

)
ξj

))
.

Notice that Z(x; e, i, ξ1, . . . , ξN ), i.e., the first component of V, is the solution
given by (6).

The inverse transformation or r is given by s : RN+2 → RN+2, whose com-
ponents are defined by

e = s1(v1, v2, v3, . . . , vN+2) = Ẑ(x; v1, v2, v3, . . . , vN+2),
i = s2(v1, v2, v3, . . . , vN+2) = v2,
ξ1 = s3(v1, v2, v3, . . . , vN+2) = v3,
...

...
...

...
...

ξN+2 = sN+2(v1, v2, v3, . . . , vN+2) = vN+2,

where Ẑ(x; v1, v2, v3, . . . , vN+2) is given by

Ẑ(x; v1, v2, v3, . . . , vN+2) =
1

π5v1v2

(
π5

24
P (l − x)2x2

+l3/2
√
2

(
π(l − x)x

(
(−l + x)

N∑
j=1

1

j4
vj+2

+x

N∑
j=1

1

j4
cos (jπ)vj+2

)
+ l3

N∑
j=1

1

j5
sin

(
jπ

l
x

)
vj+2

))
.

The absolute value of the Jacobian is determined by

|J | =
∣∣∣∣∂s1(v1, v2, v3, . . . , vN+2)

∂v1

∣∣∣∣ = ∣∣∣∣− 1

v1
Ẑ(x; v1, v2, . . . , vN+2)

∣∣∣∣ ,
which is different from zero with probability 1 (w.p. 1), since the parameters are
continuous random variables.
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Once we have all the ingredients to apply the RVT method, we can compute
the pdf of the random vector V

fV1,V2,...,VN+2(v1, v2, v3, . . . , vN+2) =fE,I,ξ1,...ξN

(
Ẑ(x; v1, v2, . . . , vN+2), v2, v3, . . . , vN+2

)
·
∣∣∣∣− 1

v1
Ẑ(x; v1, v2, . . . , vN+2)

∣∣∣∣ .
Since E, I, and ξ1, . . . , ξN are independent random variables, so

fV1,V2,...,VN+2(v1, v2, v3, . . . , vN+2) = fE
(
Ẑ(x; v1, v2, . . . , vN+2)

)
fI(v2)

· fξ1(v3) · · · fξN (vN+2)

∣∣∣∣− 1

v1
Ẑ(x; v1, v2, . . . , vN+2)

∣∣∣∣ . (7)

As we have noticed before, the model solution (6) corresponds to the first
component V1, then, we have to marginalize respect to V2 = I, V3 = ξ1, . . . ,
VN+2 = ξN , in order to obtain the 1-pdf of the stochastic solution

fN
Y (x)(y) =

∫
RN+1

fE

(
1

π5yi

(
π5

24
P (l − x)2x2

+l3/2
√
2

(
π(l − x)x

(
(−l + x)

N∑
j=1

1

j4
ξj + x

N∑
j=1

1

j4
cos (jπ)ξj

)

+l3
N∑

j=1

1

j5
sin

(
jπ

l
x

)
ξj

)))
fI(i)fξ1(ξ1) . . . fξN (ξN )

∣∣∣∣− 1

π5y2i

(
π5

24
P (l − x)2x2

+l3/2
√
2

(
π(l − x)x

(
(−l + x)

N∑
j=1

1

j4
ξj + x

N∑
j=1

1

j4
cos (jπ)ξj

)

+l3
N∑

j=1

1

j5
sin

(
jπ

l
x

)
ξj

))∣∣∣∣∣ d i d ξ1 . . .d ξN .

(8)

This latter expression can be rewritten in terms of the expectation operator,
that is computationally more efficient to obtain the pdf, as it allows us to use
Monte Carlo simulations.

fN
Y (x)(y) =EI,ξ1,...,ξN

[
fE

(
1

π5yi

(
π5

24
P (l − x)2x2

+l3/2
√
2

(
π(l − x)x

(
(−l + x)

N∑
j=1

1

j4
ξj + x

N∑
j=1

1

j4
cos (jπ)ξj

)

+l3
N∑

j=1

1

j5
sin

(
jπ

l
x

)
ξj

)))∣∣∣∣− 1

π5y2i

(
π5

24
P (l − x)2x2

+l3/2
√
2

(
π(l − x)x

(
(−l + x)

N∑
j=1

1

j4
ξj + x

N∑
j=1

1

j4
cos (jπ)ξj

)

+l3
N∑

j=1

1

j5
sin

(
jπ

l
x

)
ξj

))∣∣∣∣∣
]
.

(9)
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3 Numerical example

In this section, we show a numerical example using the previous theoretical
findings. Let us consider the following deterministic parameters: the length of
the beam, l = 10m, and the nominal value of the load, P0 = 700N. And for the
random parameters, we assume that the Young’s modulus, E, and the moment
of inertia, I, have both Gaussian distribution. More specifically, E ∼ N(210 ·
109, 105 · 108)N/m2 and I ∼ N(33740 · 10−8, 6748 · 10−6)m4. As we have seen
before, the random variables ξj , obtained from the Karhunen-Loève expansion,
follow a Gaussian dristribution, ξj ∼ N(0, 1).

In Figure 1, we show the graphical representation of the 1-pdf of the deflec-
tion of the beam, fNY (x)(y), at different spatial points, x ∈ {1, . . . , 9}, with the
truncation order of the Karhunen-Loève expansion N = 5. We can observe, that
the variance increases in the middle of the beam as expected.

Fig. 1: 1-pdf of the deflection of the beam, fNY (x)(y), at different spatial points

x ∈ {1, . . . , 9}, with the truncation order N = 5.

In Figure 2, we show the mean and 95% confidence intervals of the deflection,
Y (x). Again, we can observe that the variability increases in the middle of the
beam.

In Table 1, we show the mean of the deflection, Y (x) at the spatial point x = 5
for different values of the truncation order of the Karhunen-Loève expansion,
N ∈ {1, 5, 10, 50}. We can observe, that the approximations are very similar
with N = 1, matching up to 8 decimal numbers.
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Fig. 2: Mean and confidence intervals of the deflection, Y (x).

N 1 5 10 50

Mean 0.00025803277 0.00025803452 0.00025803360 0.00025803338

Table 1: Mean of the deflection, Y (x), at the spatial point x = 5 for different
values of the truncation order N .

4 Conclusions

In this contribution, we have applied the Random Variable Transformation
method to obtain the first probability density function of the deflection of an
embedded beam at both ends. We consider that the moment of inertia and the
Young’s modulus are independent random variables. And we use the Brownian
Bridge process to describe the load acting vertically over the beam. To repre-
sent this stochastic process, we have taken advantage of the Karhunen-Loève
expansion. In this way, we have obtained a full probabilistic description of the
deflection of an embedded beam.

In future works, we will study other important characteristics of the beam,
such as the bending moment and the shear force, and we will carry out an in-
depth study of convergence of the approximation obtained by truncating the
Karhunen-Loève expansion.
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Abstract. We deal with the probabilistic analysis of a full random-
ization of the hyperlogistic differential equation. By assuming that all
parameters of this equation as well as the initial condition are absolutely
continuous random variables with a joint density, we obtain, under very
general hypotheses, a semi-explicit expression of the first finite distri-
bution of the solution, which is a stochastic process. Furthermore, we
determine the probability density function of the inflection point, which
plays a key role in the distinctive mathematical properties the hyper-
logistic model has with respect to other classical growth models. The
mathematical findings are illustrated by means of examples where dif-
ferent distributions are assigned to model parameters.

Keywords: uncertainty quantification, hyperlogistic differential equa-
tion, stochastic analysis, random variable transformation technique, growth
processes

1 Introduction and Motivation

Growth processes are ubiquitous in nature and occur at a variety of scales, from
individual organisms to populations, economies and social systems. The study
of theses processes is essential for understanding the patterns, mechanisms and
dynamics of how systems develop and change over time, and is vital to fields
such as biology [1], medicine [2] and ecology [3], among others. Logistic-type
differential equations play a key role in the mathematical modeling of the above
processes in many settings, such as population dynamics, spread and control of
infectious diseases, chemical reactions, nucleation theory, financial systems, ur-
ban planning and transportation systems, etc. The formulation of such equations
is based on the choice of the function that defines the right-hand side of equation.
The logistic equation, in particular, is a classic example of a differential equation
used to model population growth and other similar phenomena; however, in the
literature we can find other equations also widely used for the same purpose,
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such as the Gompertz, Richards or Von-Bertalanffy equations (see [4], [5] and [6]
for original documents, respectively).

The solution of logistic models is usually represented by a sigmoidal curve,
which is divided into three phases, the lag phase, the exponential phase and the
stationary phase. The horizontal asymptote around the upper boundary value
is a distinctive property of this curve and represents the carrying capacity. The
concept of an inflection point is fundamental in the study of curves, as it provides
relevant information about the changing behavior of a function or the rate of
change of a quantity represented by the curve. The exponential phase usually
represents the period of fastest growth, so the highest growth rate occurs at the
inflection point.

In the realm of population dynamics and growth processes, the logistic growth
model, initially introduced by Verhulst in 1838, assumes a pivotal role. Unlike
earlier models, which did not take into account critical environmental constraints
to population growth, this mathematical framework offers a more realistic rep-
resentation of how populations evolve over time. A key aspect of this model is
that the population at the inflection point is exactly half of the carrying capac-
ity. This causes an undesirable constraint on the shape of the curve, since it is
symmetric with respect to that point. That is why several models have been
developed as parameterized and extended versions, which provide a relaxation
of the limitations of this model.

In the present work, we will introduce the hyperlogistic equation proposed
by Turner et al. [7]. Their theory is based on three postulates, thus obtaining a
generic growth function from which several of the known growth curves, such as
the Verhulst, Gompertz, Von-Bertalanffy or Richards curve, can be obtained as
special cases, but they also obtained several new forms, one of which is the one
we have mentioned and which we will study in the present work.

The first postulate follows in the tradition of the pioneering work of Quetelet
[8], Verhulst [9], Pearl and Reed [10], and Lotka [11] and establishes that the

growth rate, say d x(t)
d t , is proportional to a monotonically increasing function,

which indicates the generalized distance from the origin to the current popu-
lation, x(t), and to another monotonically decreasing function, which indicates
the generalized distance from the current population to the final population,
(k − x(t)). The second postulate restricts these functions to strictly positive
power functions. Finally, the third one is based on some restrictions that the
exponents must obey, thus this postulate limits the model to a mathematically
manageable set and ensures the obtainment of the common special cases. In this
way, the resulting initial value problem (IVP) has the following form{

d x(t)
d t = β

kx(t)
1−p(k − x(t))1+p,

x(t0) = x0,
(1)

where x0 > 0 is the initial population at initial time t0 ≥ 0, β
k is the proportion-

ality constant, being β > 0 the intrinsic growth constant and k > 0 the carrying
capacity, and p the shape parameter, where p ∈ (0, 1) so that its solution is a
sigmoidal function. This parameter reveals the importance and the difference of
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this equation, since its variation makes it possible to place the inflection point
of the sigmoidal curve at any value between the minimum and the carrying
capacity. Here the population at the inflection point, xPI, is given by

xPI =
k(1− p)

2
. (2)

The IVP (1) admits the following analytic solution

x(t) = k − k

1 +

(
pβ(t− t0) +

(
k
x0
− 1
)−p

) 1
p

, (3)

which depends on the parameters β, k, p and x0. In many studies, these are con-
sidered deterministic. However, it is important to note that growth is a highly
regulated and complex process, involving a delicate balance of genetic, cellular,
environmental factors, such as climate variability, resource availability, disease
outbreaks, and demographic factors, such as birth, mortality or fertility rates.
Therefore, they contain an intrinsic uncertainty that would otherwise not be
taken into account. There are many types of strategies to cope with this type of
approach, and one of them is to consider uncertainties through random variables
with regular sampling behavior. As a result, they can help to account for ran-
domness, natural variability and the influence of stochastic events on population
dynamics. Thus, random parameters are able to better explain the complexity of
the real world. Consequently, the hyperlogistic equation (1) becomes a random
differential equation (RDE) with a random initial condition as follows{

d x(t,ω)
d t = β(ω)

k(ω)x(t, ω)
1−p(ω)(k(ω)− x(t, ω))1+p(ω),

x(t0) = x0(ω),
(4)

where ω ∈ Ω indicates the sample dependence for random variables, which will
be omitted hereafter for simplicity. Its corresponding deterministic solution (3)
is now a recast stochastic process as the following

x(t, ω) = k(ω)− k(ω)

1 +

(
p(ω)β(ω)(t− t0) +

(
k(ω)
x0(ω) − 1

)−p(ω)
) 1

p(ω)

, ω ∈ Ω,

(5)
where β(ω), k(ω), p(ω) and x0(ω) are absolutely continuous random variables
defined in a common complete probability space (Ω,FΩ , P ). For the sake of
generality in our subsequent development, we shall assume that the model pa-
rameters, β(ω), k(ω), p(ω) and x0(ω) have a joint probability density function
(PDF), say f0(β, k, p, x0). The particularity of these RDEs is that much more
information can be obtained from the model apart from its solution, specifically,
by determining its first probability density function (1-PDF) one can calculate
significant information for the model such as the mean, variance, confidence
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intervals among other statistical characteristics. In this way we would have a
complete probabilistic description of the stochastic solution for each time in-
stant.

The layout of this document is as follows. In Section 2, we will determine
the 1-PDF of the stochastic solution (5). In Section 3, we will illustrate the
developed theoretical results by means of examples with synthetic data. Finally,
conclusions are drawn in Section 4.

2 Determining PDFs

In this section we will see how to determine the 1-PDF of the stochastic solution
(5) using the Random Variable Transformation (RVT) technique. The version of
this technique that we will implement in this work is found in [12], and is stated
as follows.

Theorem 1. Let U = (U1, . . . , Un) and W = (W1, . . . ,Wn) be n-dimensional
random vectors. Let r : Rn → Rn be a one-to-one transformation of U into W,
i.e., W = r(U). Assume that r is continuous in U and has continuous partial
derivatives with respect to U. Then, if fU(u) denotes the known joint PDF of
vector U, and s = r−1 represents the inverse mapping of r, the joint PDF of
vector W is given by

fW(w) = fU (s(w)) |Jn| ,

where |Jn| is the Jacobian, which is defined by

Jn = det


∂s1(w)

∂W1
· · · ∂sn(w)

∂W1
...

. . .
...

∂s1(w)

∂Wn
· · · ∂sn(w)

∂Wn

 .

In addition, as shall be seen later, this technique will allow us to calculate the
PDF of other random quantities of interest to our problem, such as the inflection
point. It should be noted that this technique has also been applied to other
problems with randomness (see [13–15]).

2.1 Determining the 1-PDF of the stochastic solution

Fixing t > 0, we apply RVT technique with the following identification

U = (β, k, p, x0), fU(u) = f0(β, k, p, x0),

W = (W1,W2,W3,W4) = r(β, k, p, x0),
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where r : R4 → R4 is the bijective mapping, the components of which are defined
by

W1 = r1(β, k, p, v0) = β,

W2 = r2(β, k, p, v0) = k,

W3 = r3(β, k, p, v0) = p,

W4 = r4(β, k, p, v0) = x(t) = k − k

1 +

(
pβ(t− t0) +

(
k
x0
− 1
)−p

) 1
p

,

and its inverse s : R4 → R4 is given by

β = s1(W1,W2,W3,W4) =W1,

k = s2(W1,W2,W3,W4) =W2,

p = s3(W1,W2,W3,W4) =W3,

x0 = s4(W1,W2,W3,W4) =
W2

1 +

((
W4

W2−W4

)W3

−W3W1(t− t0)
)− 1

W3

.

From this, we obtain the Jacobian

J4 =

W 2
2

(
W4

W2−W4

)W3−1
((

W4

W2−W4

)W3

−W1W3(t− t0)
) 1

W3
−1

(W2 −W4)
2

(((
W4

W2−W4

)W3

−W1W3(t− t0)
) 1

W3

+ 1

)2 . (6)

Thus the joint PDF of the random vector W is

fW(w) = f0

W1,W2,W3,
W2

1 +

((
W4

W2−W4

)W3

−W3W1(t− t0)
)− 1

W3

 |J4|.
Taking into account that W4 = x(t), and considering an arbitrary t > 0 and
marginalizing with respect to the other components of W, the 1-PDF is

f1(x, t) =

∫ 1

0

∫ ∞

0

∫ ∞

0

f0

β, k, p, k

1 +
((

x
k−x

)p
− pβ(t− t0)

)− 1
p

 |J4|dβ d k d p,
(7)

where J4 is given by (6).
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2.2 Determining the PDF of the inflection point

Following the same procedure, we obtain the PDF of the inflection point. So,
fixing t > 0, we apply Theorem 1 using the following identification

U = (k, p), fU(u) = f0(k, p),

W = (W1,W2) = r(k, p),

where r : R2 → R2 is the bijective mapping, the components of which are defined
by

W1 = r1(k, p) = k,

W2 = r2(k, p) = xPI =
k(1− p)

2
,

and its inverse s : R2 → R2 is given by

k = s1(W1,W2) =W1,

p = s2(W1,W2) = 1− 2W2

W1
,

which is well-defined. From this, we obtain the Jacobian

|J2| =
∣∣∣∣−2W1

∣∣∣∣ = 2

W1
.

Thus the joint PDF of the random vector W is

fW(w) = f0

(
W1, 1−

2W2

W1

)
2

W1
.

Taking into account that W2 = xPI, and considering an arbitrary t > 0 and
marginalizing with respect to the other component of W, the PDF is

f(xPI) =

∫ ∞

0

f0

(
k, 1− 2xPI

k

)
2

k
d k. (8)

3 Numerical examples

In this section we will apply the theoretical results obtained previously by means
of numerical examples using synthetic data. The aim is to obtain the 1-PDF of
the stochastic solution for each time instant, and the PDF of the inflection point.

To apply the theoretical results, it is first necessary to establish a suitable
joint PDF of the model parameters. In practice, with real data, this step is
crucial, since we have to find appropriate distributions that best capture the
uncertainty of the data. However, as in this paper we only want to illustrate
the developed theory, we will assume some arbitrary distributions based on the
positivity and boundedness of the random variables.

Let us assume that all parameters are independent, so f0 is the product of
the marginals, f0(β, k, p, x0) = fB(β)fK(k)fP (p)fX0

(x0).
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3.1 Example 1

In the first case we assume uniform distributions for all random variables. To
determine the parameter on which these distributions depend on, we set the
mean and variance to some values as follows,

E(β) = 0.2, Var(β) = 0.001 → β ∼ Unif(0.1452, 0.2547),

E(k) = 5, Var(k) = 0.04 → k ∼ Unif(4.6535, 5.3464),

E(p) = 0.2, Var(p) = 0.0002 → p ∼ Unif(0.1755, 0.2244),

E(x0) = 0.02, Var(x0) = 0.0001 → x0 ∼ Unif(0.0026, 0.0373).

Applying expression (7), the resulting 1-PDF is shown on the left panel of Fig-
ure 1, where it is observed that the mass density moves over time towards the
carrying capacity, whose PDF resembles a uniform one. In addition, the PDF
of the inflection point is shown on the right panel of Figure 1, whose mean is
around 2, thus indicating the population at the inflection point.

1.8 1.9 2.0 2.1 2.2 2.3

1

2

3

Fig. 1: Left: 1-PDF representation of the stochastic process (5) of the random
differential equation (4) at different time instants. It has been calculating from
expression (7). Right: PDF of the inflection point (2). It has been calculating
from expression (8).

The behavior of the 1-PDF is best seen in the Figure 2. On the left panel,
we observe that the mean has a sigmoidal shape, as expected, tending to the
carrying capacity. On the right panel, we can say that in the lag phase there is
not much variability, then in the exponential phase it grows until it reaches a
maximum. This is because in this phase several external factors contribute to
the growth. And, in the stationary phase, it goes down again and stabilizes.

3.2 Example 2

In the second case we assume the following distributions,

E(β) = 0.6, Var(β) = 0.01 → β ∼ Beta(13.8, 9.2),
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Fig. 2: Left: Expectation of the stochastic process (5) obtained using the 1-PDF
(7). Right: Variance of the stochastic process (5) obtained using the 1-PDF (7).

E(k) = 15, Var(k) = 0.5 → k ∼ LogNormal(2.7069, 0.0471),
E(p) = 0.3, Var(p) = 0.002 → p ∼ Unif(0.2225, 0.3775),

E(x0) = 0.05, Var(x0) = 0.0001 → x0 ∼ Unif(0.0327, 0.0.067).
The interpretation of the results obtained is similar to that of the previous

4.5 5.0 5.5 6.0 6.5 7.0

0.2

0.4

0.6

0.8

Fig. 3: Left: 1-PDF representation of the stochastic process (5) of the random
differential equation (4) at different time instants. Right: PDF of the inflection
point (2).

example, except that now the shape of the 1-PDF for each time appears to be
Gaussian.

We point out that, depending on the values of β and p, the sigmoidal curve
changes. In this case, the growth phase begins earlier and its slope is greater,
reaching the carrying capacity earlier.

4 Conclusions

In this work we have presented a full stochastic analysis of the random hyperl-
ogistic differential equation assuming that all its parameters and the initial con-
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Fig. 4: Left: Expectation of the stochastic process (5) obtained using the 1-PDF
(7). Right: Variance of the stochastic process (5) obtained using the 1-PDF (7).

dition are absolutely continuous random variables with arbitrary distributions.
For this purpose, the first finite distribution of the solution has been obtained
via the Random Variable Transformation technique under general assumptions
on the random parameters. Finally, the theoretical findings have been illustrated
by means of numerical examples.

Acknowledgements

This work has been supported by the grant PID2020-115270GB–I00 granted by
MCIN/AEI/10.13039/501100011033 and the grant PRE2021-101090, granted by
MCIN/AEI/10.13039/501100011033 and by FSE+.

References

1. Peleg, M., Corradini, M.G.: Microbial growth curves: what the models tell us and
what they cannot. Crit. Rev. Food Sci. Nutr. 51, 917–945 (2011). doi:10.1080/
10408398.2011.570463

2. Marusic, M., Bajzer, Z., Freyer, J.P., Vuk-Pavlovic, S.: Analysis of growth of mul-
ticellular tumour spheroids by mathematical models. Cell Prolif. 27, 73–94 (1994).
doi:10.1111/j.1365-2184.1994.tb01407.x

3. Petter, G., Kreft, H., Ong, Y., Zotz, G., Cabral, J. S.: Modelling the long-term
dynamics of tropical forests: From leaf traits to whole-tree growth patterns. Ecol.
Modell. 460, 109735 (2021). doi:10.1016/j.ecolmodel.2021.109735

4. Gompertz, B.: On the nature of the function expressive of the law of human mortal-
ity, and on a new mode of determining the value of life contingencies. Philos. Trans.
Royal Soc. 115, 513–585 (1825). doi:10.1098/rspl.1815.0271

5. Richards, F. J.: A flexible growth function for empirical use. J. Exp. Bot. 10, 290–301
(1959). doi:10.1093/jxb/10.2.290

6. Von-Bertalanffy, L.: Quantitative laws in metabolism and growth. Q. Rev. Biol. 32,
217–231 (1957). doi:10.1086/401873

doi:10.1080/10408398.2011.570463
doi:10.1080/10408398.2011.570463
doi:10.1111/j.1365-2184.1994.tb01407.x
doi:10.1016/j.ecolmodel.2021.109735
doi:10.1098/rspl.1815.0271
doi:10.1093/jxb/10.2.290
doi:10.1086/401873


The randomization of the hyperlogistic differential equation 103

7. Turner Jr, M.E., Bradley Jr, E.L., Kirk, K.A., Pruitt, K.M.: A theory of growth.
Math. Biosci. 29, 367–373 (1976). doi:10.1016/0025-5564(76)90112-7

8. Quetelet, M.A.: A Treatise on Man and the Development of His Faculties. Burt
Franklin, New York (1968)

9. Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement. Corr.
Math. Phys. 10, 113–121 (1838)

10. Pearl, R., Reed, L.J.: On the rate of growth of the population of the United States
since 1790 and its mathematical representation. Proc. Nat. Acad. Sci. 6, 275–288
(1920). doi:10.1073/pnas.6.6.275

11. Lotka, A.J.: Elements of Mathematical Biology. Dover, New York (1956)
12. Soong, T.T.: Random Differential Equations in Science and Engineering. Academic

Press, New York and London (1973)
13. Dorini, F.A., de Castro Cunha, M.C., Dorini, L. B.: A note on the solution

to the random Burgers–Riemann problem subject to independent and uniformly
distributed initial conditions. Comput. Appl. Math. 42, 64 (2023). doi:10.1007/
s40314-023-02207-y

14. Dorini, F.A., Bobko, N., Dorini, L.B. A note on the logistic equation subject to
uncertainties in parameters. Comp. Appl. Math. 37, 1496–1506 (2018). doi:10.1007/
s40314-016-0409-6

15. Casabán, M.C., Cortés, J.C., Navarro-Quiles, A., Romero, J.V., Roselló, M.D.,
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Abstract. Following the line started in [1], some interesting numerical
and computational techniques used in part of our research in Relativitisc
Positioning Systems (RPS) are here explained (see [2–4]). As remarked
in [1] (with other algorithms we have built), we also think the algorithms
described in this paper can be applied to other areas in the fields we work
and can also be extended in Science and Technology in general. One of
our innovations is the application of HEALPix mollweide maps in the
determination of the positioning errors. This technique is applied in the
analysis of Cosmic Microwave Background (CMB) anisotropies and we
have extended it to RPS.

Keywords: Methods: numerical, General Relativity, CMB, Relativistic
Positionig Systems

1 RPS

Simulations of the Galileo ESA and GPS NASA Satellites Constellations were
described in [5]. That description was made in GRT (General Relativity The-
ory) solving the timelike geodesics of those satellites. Circular trajectories with
Schwarzschild metric, which have the same centre as the Earth, were used. Those
orbits are named the nominal orbits. Then a description of the null geodesics of
photons emitted from such satellites were simulated in Minkowskian space-time.
The light trajectories from emission to reception inertial coordinates were repre-
sented by the analytical solution of [6]. Numerical algorithms were implemented
to performe such calculations. The relativistic positioning of an event was there
computed. The so-called emission coordinate region and co-region, the bifurca-
tion problem (double localization) in the positioning of the receiver satellite,
among other research were then pointed out for such satellites and a detailed
discussion was there performed.

In [7] those algorithms were applied to compute positioning errors using RPS.
Those errors are due to the uncertities in the description of the satellite world
lines. In that paper, a new approach was considered. The satellite orbits are
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not circles. They have perturbations due to multiple causes. Such perturbations
must be taken into account to better describe the satellite orbits. Statistical
perturbations of the nominal orbits were simulated in [7]. The formula from
[6] was computed for four satellites described with nominal orbits and with
statistically perturbed orbits. The difference of positioning with both orbital
descriptions was defined as the U-error, ∆d.

Further on, the null geodesics of the signal photons were computed in a more
realistic way. That computation was compared with the movement in Minkoskian
space-time (see [6]). That difference was called the S-error. In [8] the S-errors were
compared with the U-errors. For the same conditions, the S-errors values were
much smaller than the U-errors. As a conclusion, the hypothesis that the Earth’s
gravitational field produces negligible effects on photons can be used in a large
region surrounding Earth. This assumption simplifies numerical computations.
In our works, this conjecture is used.

Recently, our previous calculations have been improved (see [2]). The per-
turbed orbits of the satellites have been directly computed considering a GRT
space-time metric from the beginning. No linear perturbation have been used.
This metric took into account the gravitational effects of the Earth, the Moon
and the Sun, and also the Earth oblateness. Moreover, in a future more perturba-
tions could be considered. However, the order of magnitude of every contribution
depends on the distance to the Earth and this fact should be considered in the
metrics. A GRT metric was used from the first step to describe the space-time.
The time-like satellite geodesics equations were calculated. A study of the satel-
lite orbits in these new metrics was first made. Once this study was completed,
the algorithm presented in [7] was developed, using a new analysis of the U-
errors inside a great region surrounding the Earth. This analysis was performed
comparing a great deal of positions given with the Schwarzschild metric and
the new metric introduced there. The computations made in [2] improved the
previous ones.

So far, we have made a summary of our research in RPS. One of the im-
portant novelties we have introduced in all this work respect to other
works in the literature is the use of HEALPix (Hierarchical Equal
Area iso-Latitude Pixelisation) mollweide maps (see [9]) to describe
the positioning errors. This technique represents an advance respect
previous calculations in RPS and an extension of the work made in
CMB research to another field in Astrophysics. Now we will make a brief
description of this generalisation.

2 HEALPix mollweide maps applied to RPS

HEALPix mollweide maps were first used in the study of CMB sky and its
anisotropies (see [9–11]). The first probe launched to study the CMB sky was
COBE from NASA in 1992. There have been a lot of studies related with this
spacial mission. Some of the main papers related to the use of HEALPix and
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COBE results are [12–14]. A much more precise satellite was launched from ESA
in 2009, it is the PLANCK mission (see for instance [15]).

We have been working on the study of CMB anisotropies for a long time from
the first nineties of last century. First using Lemâıtre-Tolman-Bondi metric to
describe the effect of a great inhomogeneity on the CMB. That way we computed
the CMB anistropies caused by great voids and Great Attractor structures. See
for instance [16, 17]. Afterwards we used N-body codes (our own codes and the
Hydra Consortium codes) to simulate regions of the Universe and describe the
effect on CMB. See for example [18–20]. In this research we used HEALPix
mollweide maps. An example of a map computed using mollweide techiques
can be found in figure 4 of [18]. HEALPix mollweide maps represent the values
of a physical quantity arriving from a celestial spherical surface centered in the
observer. Those techniques are applied to CMB measurements. When we started
our RPS computations we decided to use those numerical algorithms to the
determination of positioning. Then we computed the positioning in a spherical
surface. This was a novelty in satellite positioning and an improvement respect
previous works.

Let us know show the HEALPix technique. This technique describes a hierar-
chical pixelisation of the celestial sphere. All pixels have the same area and those
pixels with the same latitude have the same shape. It is designed to efficiently
support:

i) Pixel location operations.

ii) The use of the hierarchical structure to change the resolution.

The HEALPix package contains optimized IDL and Fortran 90 subroutines.

HEALPix pixelization meets the following requirements:

1) Hierarchical structure: this is recognized as essential for very large
databases. Figure 1 shows a hierarchical partition, with a quadrilateral tree
structure, in which the pixels are easily numbered on a binary basis. By increas-
ing the resolution, each pixel is subdivided into four child pixels (see Figure 1).
Each one of these child pixels inherits all bits from the parent pixel and are dis-
tinguished between them by two new bits located to the right that are always 00,
01, 10, 11. In the lowest resolution the celestial sphere is divided into 12 patches,
which are then hierarchically subdivided according to the above. Actually these
are 12 patches, with four curvilinear sides, covering the entire celestial sphere.

2) Equal areas for all pixels: if the areas of the pixels are all the same,
they cannot all have the same shape, as can be seen in Figures 1 and 2 of [9].
The pixels are more elongated in the polar areas.

3)Distribution in iso-latitude: there are sets of pixels with identical shape
covering the parallels of the celestial sphere.

A distribution of pixels with the previous properties can be seen in Figure
1 of [9]. With this type of pixelization it is easy to search for a pixel of known
coordinates. The 12 large pixels that define the lowest resolution are distributed
in three rings around the Poles and the Equator in the way that can be seen in
the upper left sphere of Figure 1 of [9].
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Fig. 1: .
Quadrilateral hierarchical tree structure. On the left is shown a coarsely pixelated
patch, consisting of four binary base numbered pixels. On the right hand side
the resolution of this patch is increased, so that each pixel is subdivided into
four child pixels.
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The number of pixels is 12 × N2
side, where the free parameter Nside takes

natural even values and indicates the resolution of the grid. For Nside = 1 we
are at the lowest level of resolution and every time we divide the pixels into four
parts, the parameter Nside is multiplied by 2; in this way, the total number of
pixels is given by Npix = 12×N2

side = 12, 48, 192, 768.

In our studies of the emission region, we have chosen Nside = 16, which is
equivalent to considering 3072 pixels; while we use Nside = 32 (12288 pixels) in
the case of the co-region. The angular area of each pixel is ≈ 13.43× 13.43 deg2

for Nside = 16, whereas it is ≈ 3.36 × 3.36 deg2 if Nside = 32. Therefore, such
area is very close to 64 (16) times the mean angular area of the full Moon for
Nside = 16 (Nside = 32).

There are a total of 4 × Nside − 1 (parallel) rings over the entire celestial
sphere. The pixel centres are equidistantly located on these rings. Three different
zones on the sky are distinguished: one equatorial and two polar. The equatorial
zone is the region bounded by the two parallels that pass through the upper
and lower vertices lower than those base pixels of minimum resolution that have
their centre in the equator (see Figure 1 of [9]). This zone separates the two
polar zones. The rings located in the equatorial zone, are divided into the same
number of pixels: Neq = 4 × Nside. The rest of the rings, located in the polar
zones, contain a number of varied pixels, which grow from ring to ring as the
distance to the objects increases through the poles.

In the equatorial region the equation of the curves that define the borders of
the pixels is: cos θ = a± bϕ, while in polar caps it is: cos θ = a+ b/ϕ2.

The geometric properties that characterize HEALPix allow us to number
pixels in two different ways, as illustrated in Figure 2 of [9].

The two numbering schemes supported by HEALPix are called: RING and
NESTED. Both schemes transform the two-dimensional (2D) distribution of
discrete area elements (pixels) on the sphere, in a one-dimensional distribution,
which is essential for calculations involving data sets with a number of very large
total pixels.

The most convenient numbering system will be chosen depending on the type
of numerical problem to solve. The numbering schemes for pixels are:

a) The RING scheme, in which pixels are numbered increasing, from the
North Pole to the South Pole along each ring (iso-latitude).

b) The NESTED scheme, in which pixels are numbered in each of the 12
previously mentioned tree structures. Before we assigned a number in base 2 to
each of the pixels (see our Figure 1) and the NESTED number of the pixel is
the one that results when writing it in base 10.

We use RING numbering for all figures.

Finally, we visualize the pixelized sphere using the mollweide projection, in
which divides the sphere into two parts: the frontal hemisphere is projected in
the central part of the figure and the opposite hemisphere is represented in the
lateral parts.
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3 Results and Conclusions

In this paper, we have show how to extend the use of HEALPix mollweide maps
from CMB maps to RPS maps. This is an example of how to use numerical tools
created in some field of research to another ones. In [1], we described the use of
instruments in numerical integration applied to a problem in Cosmology and the
way they could be extended in other areas. Continuing with the field of research
iniciated in [1], we now indicate another extension of a mathematical technique,
as the mapping of the sky, to other similar physical processes.

Using HEALPix mollweide maps in RPS problems allows the determination
of maximum and minimum positioning errors and other physical quantities in
a spherical surface. Moreover, maximum and minimum values give us an idea
of the variations and the precision of positioning with the use of different tech-
niques and the contributions in the determination of this positioning too. The
shape of HEALPix mollwide maps can be seen in our papers commented in the
bibliography. For the shakness of briefness, we do not repeat the figures, but the
reader can compare them with the CMB maps and observe their similarities and
differences. Also the use we make of this kind of maps and the advances that
suppose to generate them in RPS. The spherical surface we use can be centered
in any place of the Earth. It can be the centre of it, any Earth surface position
and even an observer away from our planet. The advantatge of this method is
that one can determine the positioning in any observer in a wide range of places.
Moreover, with the use of GRT from the beginning, the contribution of any
gravitational term to the positioning can be determined.

Just to give an example of the advances that HEALPix method give us, we
remark some useful results. In [2], the positioning errors values, ∆d, are almost
of the same order of magnitude as those of the perturbed satellite orbits (or-
bital perturbation effect). This is the same conclusion as in [7] although now
a better accuracy is obtained. Here the highest ∆d values correspond to hav-
ing the maximum radial distance deviations of the satellite for the case of the
four chosen satellites. Therefore, the value ∆d directly depends on the satellite-
Earth-Moon-Sun relative spatial configuration and it does so for each of the
four satellites considered. Almost the same HEALPix maps are recovered after a
Galileo satellite orbital period. This is because the relative spatial configuration
among satellite-Moon-Sun-Earth does not nearly change after 14.2 h (periodic
effect), as the Moon and Sun hardly move after a Galileo orbital period. Here the
∆d values are smaller than the ones obtained with the statistical procedure used
in [7]. This fact is due to a more realistic representation of the satellite orbital
perturbations by the use of metrics instead of statistical deviations. Therefore a
more accurate computation of the U-errors is performed and so a more precise
calculation of the user’s positioning can be achieved. This represents an advance
in our computations respect our previous works.

Another interesting improvement in projection with the use of HEALPix
is to create HEALPix maps, but computing the positioning error ∆d on the
geoid, instead of on the spherical surface of radius centred in the Earth. A better
precision of orbits could be achieved. Data from Galileo Constellation, and other
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constellations, could be compared. These results should also be interesting for
geodesic treatment.

To summaraise, the perturbations computed using metrics improve our pre-
vious works based on statistical methods as:

1) A better description of the real satellite world lines is made.
2) The effect of each perturbing contribution in the satellite world lines and

their combinations is studied. So, the orbits of the satellites are described de-
pending on the terms considered.

3) Therefore, the contribution of each effect on the user’s positioning can also
be studied. One can add other gravitational contributions as those from Venus
or Jupiter, and so on.

4) The value of the U-errors is now smaller.
5) That means a more precise computation of the user’s positioning.
In summary, tools applied in the analysis of great observational

data from CMB are extended to RPS: such as HEALPix representa-
tions, and also computational methods for solving the ordinary differ-
ential equations systems. They properly work in both cases. So, what
we learn is that some mathematical and numerical tools working in
some physical problems should be extended to other fields.

Now we are working on the analysis and description of the numerical advances
made in other parts of our research. Such as other mathematical and numerical
tools applied in the analysis of great observational data from CMB and extended
to RPS, the numerical integration of the ordinary differential equations systems,
N-Body treatment on CMB anisotropies, or new numerical applications on EM-
RIs and gravitational waves (a new field we have started). This work will be
presented in the future.
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Abstract. The contribution addresses the relationship between quan-
tum particles and space-time by the study of a case, particularly sim-
ple: the hydrogenoid atoms. From the electronic orbit defined in the de
Boglie-Bohm theory, we investigate the conditions to be interpreted as
a geodesic in a Lorentzian manifold and we find a relation between two
components of the metric. We need at least two further relations, so we
go to the Quantum Gravity in the Wheeler-DeWitt theory. We use the
so-called Einstein’s Quantum Field equations and we reach another re-
lation between the three components of the metric. We are working on
the definition of additional relations for its complete definition.

Keywords: de Broglie-Bohm theory, General Relativity, Lorentzial me-
tric, Wheeler DeWitt Canonical Quantum Gravity, Einstein’s Quantum
field equations.

1 From the De Broglie-Bohm theory and the Riemannian
manifold to the geodesic condition

The contribution presented is a continuation of some previous works. ( [1]), ( [2]),
( [3]). The starting conjecture is that the different performance of the electron
when is free and when is integrated in an atom - where, according to the de
Broglie-Bohm (dBB) ( [4]) theory, describes circular trajectories when the quan-
tum magnetic number is higher than 0 - could be explained by the fact that the
space-time is perturbed and the electron describes on it geodesic trajectories. So
the main hypothesis is that the action of the electrical and quantum potentials of
the atomic system curve the space-time and the electron trajectory is a geodesic
of it. Then, the relationship between the electron movement and the wave func-
tion would not only be guiding from the wave to the electron, but a mutual or
dialectical relation between they, where, as is told in General Relativity, “space
acts to matter, telling it how to move and matter reacts back on space, telling
it how to curve”(Wheeler) [5].

1.1 Local relation between the Euclidean space of dBB and the
Lorentzian manifold

Let’s consider the dBB representation of the electron trajectory in an hydrogenoid
atom. The position of the electron can be considered as the image of its position
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in a Lorentzian manifold. The tangent metric shows a local identity between
both metrics of the manifold and of the tangent space. Then it is possible to
relate this metric with the Euclidean metric of a reference space. ( [6])

Consider a Euclidean space of reference, with origin in the mass center of
an hydrogenoid atom. In it, let be a point m (i.e., the electron position) with
cylindrical coordinates x

′α. We include the time coordinate, so we have a four-
coordinate system, able to describe the dBB theory. We can write:

ds2 = −d2x
′0 + d2x

′1 + (x
′1)2d2x

′2 + d2x
′3 (1)

It is possible to establish a relationship between a Euclidean space and a
Riemannian manifold at local scope, so in the neighborhood of a point following
the concepts of tangent Euclidean metric and first-order representation. Consider
a Lorentzian manifold with signature (−,+,+,+), being M0, of coordinates
xα. We can put into correspondence the point M0 of the manifold and a point
m0 of the Euclidean space, so m0 is the image of M0. Every point M in the
neighborhood of M0 can be mapped to a point m in the neighborhood of m0,
using second-degree functions Λ(2) of the difference of coordinates y

ν−yµ0 at the
point of the manifold:

−−−→m0m = [(yµ − yµ0 ) + Λµ
(2)(y

ν − yν0 )]e⃗µ (2)

From (2), passing to the limit, it follows that:(
∂m⃗

∂yµ

)
0

= e⃗µ (3)

Thus, the point m in this Euclidean space is defined by the coordinates of
the manifold yµ; the values yµ − yµ0 act as curvilinear coordinates of the point
m.

Let us now consider ḡµν the metric of the Euclidean space, defined by:

ds̄2 = ḡµνdy
µdyν (4)

Then, for yµ = yµ0 the Euclidean and Riemannian metrics have the same
values, and both metrics are said to be tangent at this point.

gµν = ḡµν (5)

So, both manifold and tangent Euclidean space have the same metric in this
point.

The elemental distance between two points in the neighborhood considered in
the Riemannian manifold and the Euclidean space is the same, so it is conserved:

m0m
2 = ( ¯gµν)0 dy

µdyν = (gµν)0 dy
µdyν =M0M

2
(6)

So ds2 is conserved between the Lorentzian manifold and the Euclidean space.
Now, since cylindrical and axially simmetric space-time allows the following met-
ric’s structure ( [8]):
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gµν =


g11 0 0 0

0 g22 0 g20

0 0 g33 0

0 g02 0 g00

 (7)

we can write:

ds2 = −g00d2x0 + 2g02dx
0dx2 + g11d

2x1 + g22d
2x2 + g33d

2x3 (8)

The tensors defined on the point m in both Euclidean spaces will transform
according to the rules of transformations of the coordinates; particularly the ds2

as invariant, will have the same value in both reference systems.
If ηαβ is the orthogonal Euclidean metric of the reference system (e.g. cylin-

drical) and x
′α its coordinates, we can write this equivalence as:

ds2 = gµνdx
µdxν = ηαβdx

′αdx
′β (9)

And this indeed will be the metric of the tangent Euclidean space-time at
the point m. Then we can relate the elemental interval in the tangent space and
the space in the reference system, with g00 = 1 as:

2g02dx
0dx2 + g22d

2x2 = (x
′1)2d2x

′2 (10)

Consider the motion of the electron around the proton in the dBB represen-
tation:

x
′1 = ρ0 ;x

′2 = ϕ =
uℏt
mρ20

;x
′3 = z ;x

′0 = ct

We can make the following approximate considerations:

∗ dx0 = dx
′0 = cdt, because we work with velocities that are little respect c.

∗ dx1 = dx
′1 = 0 because the electron has a circular trajectory in the dBB

theory.
∗ dx2 = dx

′2 = ϕ because of symmetry considerations.
∗ dx3 = dx

′3 = z because the trajectory is plane in E3
So we can write dxα instead of dx

′α. Then we can establish the quadri-
velocity as:

dx1

dt
= ρ̇ = 0

dx2

dt
= ϕ̇ = ω =

uℏ
mρ20

dx3

dt
= ż = 0

dx0

dt
= c (11)
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Then the equation (10) simply runs:

g22 = ρ20 −
2cg02
ω

(12)

We now introduce the quantum condition that all electrons that may
belong to the same quantum state corresponding to the same atomic orbital
must possess the same angular or kinetic moment:

mωρ20 = uℏ (13)

where ℏ is the reduced Planck constant, u is the magnetic quantum number
and ρ0 is the radius of the orbit, while ρ is the generic coordinate of space-time,
which matches ρ0 in the electron’s trajectory.

And we introduce the constant: f , the reduced Compton’s length:

f =
ℏ
mc

(14)

with which we can express, by substituting ω in (12):

g22 = ρ20

(
1− 2

uf
g02

)
(15)

This relation is very important for our purpose; we will see that it is a particular
geodesic of the Lorentzian manifold.

1.2 Geodesic condition

The figure (1) represents, in a hydrogenoid atom, the composition of the electro-
static force FE and the quantum force FQ, derived from the quantum potential,
both in a constant phase plane. Their resultant is the centripetal force FC . But
we can consider this movement as a geodesic in a Lorentzian manifold, so the
effect of forces is substituted by the geometry constraint.

We introduce the hypothesis that the electron’s trajectory according to dBB
corresponds to a geodesic in a Lorentzian manifold, as described by a null co-
variant derivative:

d2xµ

dt2
+ Γµ

νλ

dxν

dt

dxλ

dt
= 0 (16)

with parameter the proper time, that we identify as the observator time (speed
in the range of 10−2c). Replacing velocities (11) to (16) we get:

ω2Γµ
22 + 2ωcΓµ

02 + c2Γµ
00 = 0 (17)

The affine connectors can be expressed with respect to the metric tensor as
follows:
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Fig. 1: Forces acting on the hydrogen electron according to dBB theory.

Γµ
νλ =

1

2
gµδ(∂µgλδ + ∂λgµδ − ∂δgµλ) (18)

We now make the hypothesis that the components of the metric
do not depend on the angle, ϕ = x2, the z = x3 or the time ct = x0. In
the components of the metrics, we will only consider variation with respect to
the ρ = x1 coordinate as possible.

Replacing this in the equation that expresses the connector depending on the
metric gij we can write the non-zero connectors and the geodesics’ equations:

Γµ
22 =

1

2
gµδ(∂2g2δ + ∂2gδ2 − ∂δg22) = −

1

2
gµδ∂δg22 = −1

2
gµ1∂1g22 (19)

Γµ
02 =

1

2
gµδ(∂2g0δ + ∂0gδ2 − ∂δg02) = −

1

2
gµδ∂δg02 = −1

2
gµ1∂1g02 (20)

Γµ
00 =

1

2
gµδ(∂0g0δ + ∂0gδ0 − ∂δg00) = −

1

2
gµδ∂δg00 = −1

2
gµ1∂1g00 (21)

Recalling that the axially symmetric metrics have the above mentioned struc-
ture, that g11 ̸= 0, indicating by g

′
the total derivatives with respect to x1 and

using previous equations, we come to the by us named “Geodesic dBB theorem”:

u2f2g′22 + 2ufρ20g
′
02 + ρ40g

′
00 = 0 (22)

where ρ0 is the electron’s orbit radius, f is the Compton length and u is the
quantum magnetic number. With g00 constant, we come to:

u f g′22 + 2 ρ20 g
′
02 = 0 (23)

The integration of the differential equation (23) runs:

u f g22 + 2 ρ20 g02 = constant (24)
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but it must also be accomplished (15), so the constant is defined as u f•
2 and we

establish the following equation:

g22 = ρ20

(
1− 2

uf
g02

)
(25)

So, this equation (25) is, between the bundle of solutions given by (24), the
particular solution that fulfills both conditions of elemental distance conserva-
tion and of geodesic, with the approximations and hypotheses made. There is a
multiplicity of metrics that accomplish this condition. First, the equation gives
a bundle of possible solutions for the function components. Secondly, the com-
ponent g11 does not appear in the equation, so is undetermined.

That indicates that further (at least two) conditions are required to determine
the metrics of the Lorentzian manifold in the vicinity of the particle.

2 Quantum gravitation

An avenue to overcome the missing description previously mentioned is to look
for the relationship between the energy-moment content and the geometry. It
addresses us to the quantum gravity: to the so-called “Einstein’s quantum field
equations” that have been recently formulated in the frame of the 3+1 and
specifically the Wheeler-deWitt theory. ( [9]),( [10]), ( [11]),( [12])

We start with the 3+1 model of General Relativity (ADM). It describes the
space-time as a set of 3-dimensional hypersurfaces, each one labeled by the time.
So, time is constant in every hypersurface.

From there, it is possible to generate a Lagrangian and a Hamiltonian for-
mulation that allows for defining the dynamical equations and Einstein’s field
equations.

The translation to the quantum conception is possible through a quantifica-
tion, by changing the canonical coordinates to operators. We come then to the
Wheeler-DeWitt theory of quantum gravity.

When applied to mass-particles (fermions) it is also possible to derive Ein-
stein’s field equations for these quantum objects.

We will try to adopt this development to complete the definition of our
previous theory. We will adopt here the signature (+ - - -) and units according
to ℏ = c = 1. Greek indexes vary from 0 to 3 and Latins from 1 to 3.

2.1 Classical approach

Let a coordinate point (t, xi(t)) be in the Σt hypersurface that has hij(t) 3-
dimensional metric and the coordinate point (t+dt, xi) in the Σt+dt hypersurface
that has hij(t+ dt) metric.

Let the proper time between the two events be Ndt, N the lapse function .
Let the space coordinates of the point of Σt+dt be x

i+N idt with N i as functions
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Fig. 2: Two hypersurfaces separated by a time differential (S. Carlip, [4] (2019).

that determine the displacement vector. So, the differential line element (Figure
2):

ds2 = N2dt2 − hij(dxi +N idt)(dxj +N jdt) (26)

The action of the system (Einstein-Hilbert SG plus non-relativistic particle
SM ):

Scl = SG+SM = − 1

κ

∫
R
√
−gd4x−m

∫
Ndt+

m

2

∫
hij
N

(Ẋi+N i)(Ẋj+N j)dt

(27)
where R is the scalar curvature of the manifold; N and N i are functions of t;
κ = 16πG. The canonical variables are Xi and Hij = gij . Then we can formulate
the Lagrangian L and the Lagrangian density L. From it we can formulate the
canonical moments:

Pi = ∂ẊiLcl =
m

N(X)

(
Ẋi +Ni(X)

)
, πij = ∂ḣij

Lcl = −
1

κ

√
h(Kij −Khij)

(28)
, and from there the energy-momentum tensor, the energy component of which
is T 00

C . If we integrate it over the hypersurface Σ we obtain the total energy:∫
Σ

d3xT 00
C =

∫
Σ

d3x
m+ 1

2mPk(t)P
k(t)

N2(t, x)
√
h(t, x)

δ(x−X(t)) =
m+ 1

2mPk(t,X)P k(t,X)

N2(t,X)
√
h(t,X)

(29)

2.2 On Wheeler DeWitt canonical quantization

In Wheeler-DeWitt theory, the “state” of the system is a functional of particle
coordinates and 3-metric, Ψ(X,hij); the Wheeler-Dewitt equation holds:

ĤΨ = ĤGΨ + ĤMΨ (30)

where:

ĤG = −κGijkl
δ2

δhijδhkl
+ V(h, x) ; ĤM = δ(x−X)(m− ∇

2

2m
) (31)
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with V(h, x) as effective potential density and Gijkl the DeWitt metrics. Also,
there is the diffeomorphic constraint(Di covariant derivation):

ĤiΨ = ĤGiΨ + ĤMiΨ ; ĤGi = 2hikDj
δ

δhjk

; ĤMi = δ(x−X)∇i (32)

It is important to notice that when writing the wave equation in polar form,
ψ = |ψ|eiS and entering the conditions Pi = ∇iS and πij = δS

δhij
we get the

particle guide equations:

Ẋi =
N(X)

m
∇iS −N i(X) ; ḣij = 2κNGijkl

δS

δhij
+DiNj +DjNi (33)

Varying total action (classical and quantum) to the metric gµν we can derive
the Einstein’s Quantum Field Equations. We get, with the cosmological constant
Λ = 0:

Gµν = Rµν −
gµν
2
R = 8πG(TCµν + TQµν) (34)

So we must add to the previously calculated TC , the “Quantum contribu-
tion”: the tensor TQµν . We are mainly interested in the density energy compo-
nent T 00

Q :

T 00
Q =

1

N2(t, x)
√
h(t, x)

(
−κGijkl

1

|Ψ |
δ2|Ψ |

δhijδhkl
− δ(x−X)

ℏ2∇2|Ψ |
2m|Ψ |

)
(35)

Integrating it into a 3-d (closed) hypersurface, we obtain the total particle(s)’s
energy :

Et =

∫
Σ

d3xT 00 =
1

N2(t, x)
√
h(t, x)

(
m+

1

2m
Pk(t)P

k(t)− ℏ2∇2|Ψ |
2m|Ψ |

)
(36)

− κ
∫
Σ

d3xGijkl
1

|Ψ |
δ2|Ψ |

δhijδhkl

that can provide an additional equation to define the metric of space-time.
In two-particle systems such as the hydrogen atom, in which one particle is

much heavier than the other one, the Schrödinger wave function coincides with
that of Wheeler-DeWitt, ( [11]), which allows us to use atomic orbitals as such.

The spatial metric hij = gij remains constant in time: ˙hij = 0. The geodesic
hypothesis links the derivatives of the components of the metric g′22 and g′02.

As we have advanced previously, the metric gµν allows the following expres-
sion:

gµνdx
µdxν = (N2 −NkN

k)dt2 − 2Nkdx
kdt− hijdxidxj (37)



124 Guillem Gómez i Blanch and Màrius Josep Fullana i Alfonso.

Expressing the differential element ds2 based on (26) and matching the above
equation yields:

g00dt
2 = (N2 −NkN

k)dt2 ; −2h02dx2dx0 = −2Nkdx
kdt (38)

where the displacement vector has components:

N1 = 0 ; N2 = h02 ; N3 = 0 (39)

2.3 Elements of a first approximation to the application to the
hydrogenoid atoms II.

We can add a new condition for the metric tensor, concerning also the compo-
nent g11. In our treatment of the hydrogenoid atom, we can come back to the
expression of T 00 (35), which allows the calculation of the total integral energy
on a hypersurface. The δ(x −X) in the mentioned reference indicates that the
integral can be done in a very reduced neighborhood of ρ as the energy of the
system is reduced to the nucleus and the electron. This energy must be, for low
particle momentum, simply M − En. Therefore, we get:

ET =M − En =

∫
Σ

dx3T 00 = (40)

=

√
g22

(g22 − g202)g11

M +
m
(

u
mρ2 + g02

)2
2(g202 − g22)

− En +
u2

2mρ2
− q2e

4πϵ0
√
ρ2 + z2


allowing g11 to be defined as a function of g22 and g02, previously defined.

g11 = (41)

=

√
g22

(g22 − g202)(M − En)

M +
m
(

u
mρ2 + g02

)2
2(g202 − g22)

− En +
u2

2mρ2
− q2e

4πϵ0
√
ρ2 + z2


3 Conclusions

The hypothesis that the electrons in the hydrogenoid atoms describe geodesics
of Lorentzian manifolds, in the frame of the dBB theory and with the assumed
approximations, is found to be coherent with the Riemmannian geometry. A
condition is derived that allows to distinguish the only geodesic that fulfills all
the requirements.

The transposition to Quantum Gravity to go deeper in the interpretation
allows the definition of an additional constraint that relates the total energy of
the atomic system with all the components of the metrics.
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We are working on the detailed development of the theory, in order to provide
a complete form for the metric. So, further work is required to achieve the
complete metric definition.
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València, 46022 Valencia, Spain,
davidsorianopascual@gmail.com

Abstract. In this paper, a semi-analytical orbit propagator is developed
to study trajectories of satellites orbiting between 200 and 2000 km of
altitude considering the atmospheric drag coefficient, the oblateness of
the Earth and the effects of the Sun and the Moon in the orbit. The main
goal of the propagator is to predict the decay process of the orbit and the
re-entry of the satellite into the atmosphere. In this sense the ballistic
coefficient is one of the most important characteristics of the satellite to
be considered. This coefficient depends on several factors as the shape
of the satellite, its attitude and the temperature and composition of the
atmosphere. The implemented algorithm takes into account these factors
and their variability in order to solve the nonlinear equations of the
spacecraft motion obtaining an optimal balance between precision and
computational cost. Moreover, the tool makes a self verification study
checking with known data of the chosen satellite.

Keywords: ballisitic coeficient, LEO satellites, life estimation

1 Introduction and Statement of the problem

The number of satellites and objects orbiting around the Earth at altitudes
between 200 and 2000 km has increased considerably in recent years. Most of
these objects are monitored by means of telescopes, radars and other stations and
are available at the NORAD (North American Aerospace Defense Command)
website [1]. However, knowing the trajectory of these objects as accurately as
possible in order to predict their positions can help us to avoid collisions and
other potential hazards.

Low Earth Orbit (LEO) satellites are expected to decay into the Earth atmo-
sphere in a short period of time mainly due to the atmospheric drag. To estimate
their lifetime, it is necessary to use prediction tools that solve the corresponding
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motion equations. The precision and efficiency of these tools depends on the
orbit propagation model and the perturbation forces considered on it, and the
accuracy of the numerical integration method. These models consider the Kep-
lerian equations of motion and the dominant perturbation forces which, for LEO
satellites, are the atmospheric drag coefficient, the oblateness of the Earth and
the effects of the Sun and the Moon.

The atmospheric drag is related with the atmospheric density and the bal-
listic coefficient of the satellite. While the atmospheric density is independent
of the considered satellite and varies with time, solar activity, altitude and ge-
ographic location; the ballistic coefficient is a parameter that includes different
characteristics of the satellite like its drag coefficient, cross-sectional area and
mass. Determining this ballistic coefficient is one of the most important objective
of this work, as it enables the development of an accurate propagator. This prop-
agator is designed to predict the re-entry of a Low Earth Orbit (LEO) satellite,
while taking into account the most significant perturbation accelerations affect-
ing it.

So, this work develops an integrator of the spacecraft perturbed motion equa-
tions using Matlab R2018a software. This integrator includes an iterative algo-
rithm to determine the ballistic coefficient of the satellite under study. Moreover,
the implemented propagator is validated by checking the evolution of the solu-
tion with some given data of the satellite.

The Keplerian motion equations of a satellite with perturbations on the ac-
celeration, according to the Cowell’s formulation [2], is

r̈(t) = − µ
r3

r+ a, (1)

where µ = 398604.4 km3/s2 is the Earth’s gravitational parameter, r represents
the position of the satellite relative to the Earth, r is the modulus of the vector
position, dots are time derivatives and a is the perturbing acceleration vector
that includes, by addition, the main perturbing sources such as the Earth’s
oblateness (aJ), the gravitational effects of the Sun and Moon (am and a⊙,
respectively), and atmospheric drag perturbations (aD), which are primarily
significant for a spacecraft orbiting the Earth at lower orbits. That is,

a = aJ + am + a⊙ + aD. (2)

The first perturbation considered is a well-known perturbation that is usually
included in the motion equations when carrying out long-term orbital propaga-
tion. It considers the Earth as an oblate spheroid and adds the acceleration
perturbation corresponding to each zonal harmonic of the planet [3]. The five
first harmonics have been implemented in the propagator to have a more accu-
rate model, that is

aJ = aJ2
+ aJ3

+ aJ4
+ aJ5

. (3)

Relative to the Sun and Moon effects on the acceleration, a three-body ap-
proach has been carried out for each one of them getting that these effects can
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be included as [4]:

am = µm

(
rm/s

r3m/s

− rm
r3m

)
and a⊙ = µ⊙

(
r⊙/s

r3⊙/s

− r⊙
r3⊙

)
, (4)

where rm/s and r⊙/s are the position of the Moon and the Sun relative to the
satellite, rm and r⊙ are the position of the Moon and the Sun relative to the
Earth, respectively, and µm = 4903 km3/s2 and µ⊙ = 1.3271241̇011 km3/s2.

So, the implemented integrator will include an addition of all these accelera-
tion effects together with the atmospheric drag perturbation, which is described
in the next section.

.

2 Atmospheric drag perturbation

The atmospheric drag perturbation aD is mainly obtained from the atmospheric
density and the ballistic coefficient of the satellite as [2]:

aD = −1

2
β ρ v2rel

vrel

|vrel|
(5)

where ρ is the atmospheric density, vrel is the relative velocity vector of the
satellite and β is the ballistic coefficient, which depends on the characteristics of
the spacecraft. The more realistic the density and ballistic coefficient estimates
are, the more accurate the orbital propagation model will be.

The atmospheric density ρ strongly depends on the solar activity and the ge-
omagnetic fluctuations caused by solar storms. Solar activity results in long-term
11-year solar cycles and other effects such as diurnal, seasonal, longitudinal and
latitudinal fluctuations [2]. It can be quantified by means of the solar radiation
indices F10.7 (solar flux emitted at a wavelength of 10.7 cm), S10 (Extreme Ultra
Violet radiation), M10 (Mid Ultra Violet radiation) and Y10 (a weighted index
between X-ray emissions and Lyman-α ones). On the other hand, the geomag-
netic fluctuations are included by means of the geomagnetic activity index A,
which is calculated as the average value resulting from daily observations made
every 3 hours from 12 locations around the world.

Then, under all these considerations, different models to evaluate ρ have been
proposed in the literature [2, 3] depending on the altitude and the solar and
geomagnetic activities. In this work, two dynamic models are implemented to
estimate ρ, the Jacchia-Bowman 2008 (JB08) model [5] and the Harris-Priester
(HP) model [2]. The first one considers most of the solar activity phenomena to
give ρ in an empiric way, while the second one only considers diurnal variations
and an average of the solar activity index and estimates ρ as an exponential
interpolation from statistic tables.

Since the aforementioned solar indexes are only available from 1997 until 1
or 2 months before the present day, the JB08 atmospheric model can be used as
an estimation of ρ until that date and then the HP model is used to estimate ρ
in the final evolution time.
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2.1 Ballistic coefficient estimation algorithm

The ballistic coefficient β involves the drag coefficient, CD, the surface, A, and
the mass, m, of the satellite. It is an important coefficient to be determined in
order to get more realistic trajectories for the satellite and a better prediction
of its lifetime. This coefficient is defined as

β =
CDA

m
(6)

Note that β is not constant since it depends on the drag coefficient which
is related to the temperature and the orbit altitude. Throughout this work the
surface A and the mass m are assumed to be constant along the orbit of the
satellite.

Several models have been developed to estimate β using the Two-Line-
Element (TLE) data [6, 7]. These TLE data provide β through the value B∗

by the expression:

β =
2B∗

ρ0
(7)

where ρ0 = 0.1570 kg·m−2·R−1
E is the reference value of atmospheric density,

and RE = 6371 km is the mean Earth radius.
So, starting from a TLE data, the first estimation of the ballistic coefficient

is given by the expression (7). Next, an iterative process based on the Secant
method begins to get a better estimation of this parameter [7].

It is worthwhile to note that before the iterative algorithm begins, the code
makes a filtering of the TLE data to remove those data that are not updated
or have interferences with other satellites. Once this filtering has been done, the
process begins as follows:

1) The first estimation of the ballistic coefficient, β1, is obtained from the first
TLE data using (7).

2) With this β1 use the propagator to integrate the motion equations to the
epoch of the following TLE data of the set.

3) Obtain the difference between the propagated semi-major axis, aprop1, and
the semi-major axes given by the second TLE data, aTLE2:

∆aprop1 = aprop1 − aTLE2

4) The second estimation of the ballistic coefficient will be

β2 =
∆aTLE

∆aprop1
β1

where ∆aTLE = aTLE2 − aTLE1.
5) Now, use β2 to propagate again from the first TLE data to the second TLE

data epoch.
6) Calculate the difference between the new propagated semi-major axis, aprop2,

and the semi-major axes given by the second TLE data, aTLE2:

∆aprop2 = aprop2 − aTLE2
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7) The third estimate will be:

β3 = β2 −∆aprop2 ·
β2 − β1

∆aprop2 −∆aprop1
8) Again, make a propagation to the second TLE data epoch using β3.
9) Calculate the difference between the new propagated semi-major axis, aprop3,

and the semi-major axes given by the second TLE data, aTLE2:

∆aprop3 = aprop3 − aTLE2

10) If ∆aprop3 > 10−4km then repeat the process from 7), else continue in 11).
11) Repeat the whole process for the following pair of TLE data in the set.

This process end when all the pairs of TLE data have been analyzed and
provides us an estimate of the ballistic coefficient that improves the initial value
obtained from the TLE data.

3 Validation of the implemented code

In this section, a validation of the implemented integrator has been done. For
that, two small spherical satellites, Starshine I and Starshine II [8], are used
since their deorbit dates are known and their surface and area can be considered
constant along their trajectory. In fact, both satellites have the same size and
mass, that is, 0.178 m2 and 39.46 kg but were launched in different epochs. The
first one was launched on May 27th, 1999 and deorbits on February 18th, 2000;
and the second one was launched on May 12th, 2001 and made its reentry on
April 26th, 2002. It can be directly observed that their timelifes were different
despite their characteristics were very similar.

Next, the implemented code is tested using these two satellites. Firstly, the
code downloads from Celestrak [1] the satellite TLE data set in a given time
before their reentry has taken place. The obtained TLE data set is filtered to
remove those atypical data. Now, the program is ready to make an estimation
of the ballistic coefficient using the algorithm given in Section 2. Once the bal-
listic coefficient has been estimated, the integrator uses it to obtain the orbit
propagation solving the motion equations with the considered perturbations.

Figure 1 depicts the variations in the semi-major axis for both satellites,
Starshine I and Starshine II, clearly illustrating the deorbit of each satellite.
Starshine I’s propagation began on June 11th, 1999. The propagator predicts
its reentry to occur 258.017 days later, whereas the actual reentry took place
258.38 days after the starting date. As for Starshine II, the propagation started
on December 21st, 2001. The code anticipated its reentry after 130.84 days, while
the actual event happened 130.93 days later. These close estimations suggest
that the code is functioning effectively and is capable of accurately predicting a
satellite’s deorbit timing.

In addition, it can also be seen in Figure 1 that the lifetime of both satellites
is quite different although they have very similar characteristics (small spheri-
cal satellites with the same size and weight). These differences are due to the
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Fig. 1: Semi-major axis propagation for Starshine-I and Starshine-II

different atmospheric conditions the satellite suffered, since both satellite were
launched at different epochs. As it can be seen in Figure 2, the solar activity was
greater for the Starshine II epoch. This activity causes a greater drag coefficient
for this satellite, as it can be seen in Figure 3.

Fig. 2: Solar activity index F10.7 for the orbit epoch of Starshine-I and Starshine-
II

4 Conclusions

A propagation model has been developed to estimate the lifetime of LEO satel-
lites and predict their orbital trajectories. This model includes the main per-
turbating effects acting on this kind of satellites, that is, Earth’s oblateness,
atmospheric drag, and solar and lunar gravity perturbations. The model has
been validated to make propagation and prediction studies of LEO orbits.
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Fig. 3: Drag coefficient estimation CD for Starshine-I and Starshine-II

Solar activity has been found to be the most influential factor in the esti-
mation of atmospheric density, and consequently affects the estimation of the
satellite’s lifetime. So, the JB08 atmospheric model, which includes most of the
solar activity indices, has been used until the epoch where these indices are
available. Later the HP atmospheric model has been implemented for the final
evolution epoch.

The estimation of the ballistic coefficient is also an important feature of the
code. It has been done by means of an iterative process based on the Secant
method. The validity of the iterative estimation method has been verified, since
the orbital propagation obtained coincides with the observed data.
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Abstract. One of the main problems in celestial mechanics is the well-
known two-body problem. This problem can be studied by analytical
and numerical methods. In the elliptical case, the performance of the
numerical method is good if the eccentricity value is not high. The main
problem, in this case, is the distribution of the points over the orbit.
Given a fixed temporal step size, most points are located in the apoapsis
region, while few are in the periapsis region. This paper tries to define
a new temporal variable so that the point distribution is higher over the
periapsis region than on the apoapsis region. It is also desirable to obtain
a higher concentration of points with greater curvature. To this aim, we
intend to study a modification of the biparametric family of anomalies.

Keywords: Celestial mechanics. Two-body problem. Orbital motion

1 Introduction

One of the main problems in celestial mechanics is studying the two-body pro-
blem.
The relative motion of the secondary with respect to the primary is defined by
the second-order differential equations:

d2r⃗

dt2
= −µ r⃗

r3

where r⃗ is the vector radius of the secondary and µ = G(m1+m2) where G is the
gravitational constant and m1, m2 the masses of the primary and the secondary
respectively.

This problem is also appropriate for testing numerical methods because we
can compare the numerical and the analytical solution. The analytical solution is
described by the set III of elements of Brouwer and Clemence (a, e, i, Ω, ω,M) [1].
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The performance of the numerical methods is good. However, in the case
of very eccentric orbits, the point distribution when the natural time, or mean
anomaly, is used is not according to the dynamics.

To solve this problem, there are several ways. In this paper, we use the
analytical regularization of stepsize to reparametrize the orbit to get a more
appropriate point distribution on the orbit. This method can be combined with
variable stepsize integrators, symplectic integrators, and other techniques. The
reparametrization technique is a very interesting method to solve several prob-
lems. An interesting review of these methods can be seen in [4].

In 1912, Sundman [16] introduced a change of temporal variable using the
transformation r dτ = dt, a temporal reparametrization of the motion known as
the Sundman transformation. In this transformation, we can change the time
by the mean anomaly multiplying by the mean motion n and including in τ a
normalization factor 1

a the Sundman transformation can be rewritten as dg =
r
adM where g is the eccentric anomaly.

This method has been used by several authors obtaining a set of time repara-
metrizations Ψ in the form dM = Q(r)dΨ where Q(r) is called partition function
and Ψ = Ψ(M) is a 2π periodic function ofM which satisfies Ψ(0) = 0, Ψ(π) = π.

In this sense, Nacozy introduced a new parameter τ related by r
3
2 dτ = dt [15],

Janin and Bond extended this transformation to Ψα defined by rαdΨα = dt [9],
[10], Brumberg [2] introduced the regularized length of arc s∗ by vds∗ = dt,
where v is the velocity of the secondary, Brumberg and Fukushima introduced
the elliptic anomaly ω as ω = πu

2K(e) −
π
2 , where amu = g + π

2 [3].

All these variables can be reduced to anomalies, including a normalization
scale factor so that they take values in [0, 2π] along one revolution, The classic
mean anomaly M , the eccentric anomaly g, and the true anomaly f can be
considered temporal variables. López [14] defines the semifocalanomaly Ψ as the
mean between f and f ′, where f ′ is the antifocal anomaly [8].

All of these anomalies are included in the biparametric family of anomalies
Ψα,β defined by López [13] as

Kα,βr
αr′βdΨα,β = dM (1)

This family contains the anomalies defined by the previous time transformations,
for α = β = 0 we have the mean anomaly M , for α = 1, β = 0, the eccentric
anomaly g, forα = 1/2, β = −1/2 the generalized length of arc introduced by
Brumberg, for α = 3/2, β = 1/2 the elliptic anomaly ω for α = 1, β = 1 the
antifocal anomaly, and for for α = 2, β = 1 the semifocal anomaly.

Notice that the anomaly Ψα,β is symmetric with respect to the axis of the
ellipse when α− β = 1.

There are some interesting anomalies not included in this biparametric family,
[7], [5], [11], [12]

This paper is focused on studying a new geometric point of view about the
biparamétric family. This section presents the background and the primary goal
of this paper. In Section 2, we study the relation between the curvature and the
vector radii r r′, and from them, the biparametric family of anomalies is related
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through the vector radius r and the curvature. In section 4, the main conclusions
of this study will be discussed.

2 The biparametric family of anomalies as function of
vector radius and the curvature.

In this section, we consider the curvature of an elliptical orbit as a function of
the eccentric anomaly g. For this anomaly, it is well known that:

ξ = a(cosg − e), η = a
√

1− e2 sin g (2)

where (ξ, η) are the orbital coordinates referred to the primary focus placed in the

point F ,
−→
Fξ running to the periapsis region and

−→
Fη making a direct orthogonal

system with
−→
Fξ the motion of the secondary whit respect to the primary, direct

in the system (F, ξ, η). On the other hand, the vector radius r of the secondary
with respect to primary and the vector radius r′ with secondary focus of the
ellipse F ′ are given by:

r = a(1− e cos g), r′ = a(1 + e cos g). (3)

The curvature κ(t) of a planar parametric curve r⃗(t) = (x(t), y(t)) is given by [6]

κ(t) =
∥r⃗′(t)× r⃗′′(t)∥
∥r⃗′(t)∥3

(4)

Applying this formula to the equation of the ellipse parametrized by the eccen-
tric anomaly r⃗ = (a(1− e cos g), a

√
1− e2 sin g) we obtain:

κ(g) =
a
√
1− e2

(
√
1− e2 cos2 g)3

. (5)

Taking into account that the minor semiaxis of the ellipse can be represented by
b = a

√
1− e2, we can represent the curvature in a more symmetric form as:

κ(g) =
a b

(
√
a2 sin2 g + b2 cos2 g)3

(6)

. On the other hand, we have that the product of vector radii r and r′ is given
by:

r r′ = a2(1− e2 cos2 g), (7)

and comparing with (5) we obtain:

(r r′)2κ(g)3 = a10(1− e2), (8)

and so (r r’) can be represented using the curvature as

r r′ = a a1/3
3
√

1− e2κ(g)−2/3. (9)

For this reason the biparametric family of anomalies Ψα,β can be rewritten as
Φγ,δ where:

Cγ,δr
γκ(g)δdΨγ,δ = dM (10)

where γ = α− β, δ = − 2
3β, and Cγ,δ = Kγ,δa

1+1/3 3
√
1− e2
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3 Concluding remarks

This paper provides a new point of view on the biparametric family of anomalies.
This family can be rewritten int the form Φγ,δ where Cγ,δr

γκ(g)δdΨγ,δ = dM .
These anomalies depend on two factors rγ and κ(g)δ, which allows a simple inter-
pretation of the reparametrization. Taking n points on the ellipse with anomaly
Φγ,δ = k h h = 2π/n, k = 1, . . . , n the mean of the first factor is a displacement
of the points from the region of apoapsis to the periapsis one. The second factor
κ(g)δ represents a symmetric displacement of the region from the semimajor to
the minor axis, which provides an easy interpretation of the family that was not
available until today.
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13. J.A. López, V. Agost, M. Barreda. (2017) A new bi-parametric family of
temporal transformations to improve the integration algorithms in the study of
the orbital motion. Journal of Computational and Applied Mathematics 309,
482–492.
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1 Introduction

The objective of the article is to introduce Entropy and Temperature in the
context of abstract dynamical systems. The starting hypotheses to reach the
objective are the similar patterns of: (1) the Internal Energy, provided by the
second law of classical reversible Thermodynamics, and (2) Dirac’s Hamiltonian
provided by dynamical systems written as coupled systems of first order differ-
ential equations [1].

Note that this objective takes part of an old epistemological program of sci-
ence: the unification of Dynamics and Thermodynamics, whose most decided
research was due to I. Prigogine [2]. The modern attempts to reach that uni-
fication lie in the context of the Newtonian Hamiltonian systems (with sec-
ond order Hamiltonian functions in moments) of Irreversible Thermodynamics,
through Liouville, Boltzmann and Fökker-Planck equations, among others [3].
Other attempts are more related with the approach here presented, but with
other starting points, such as Sinergetics by H. Haken [4].

The approach here followed was provided by first time in the last edition
of this congress [5]. The objective was to include Entropy in the mathematical
expression of Dirac’s Hamiltonian. However, a better inspection of the followed
method provides that it fails in [5]. Therefore, this failure must be here explained.
This is the content of Section 2. In Section 3 the new hypotheses to include
Entropy (and also Temperature) in Dirac’s Hamiltonian are provided by stating
three postulates and their consequences. Section 4 is devoted to demonstrate
that the Internal Energy of the classical reversible Thermodynamics holds the
formalism as a particular case. Section 5 presents the state of the research in the
present. Section 6 is devoted to the paper conclusions.

2 Dirac’s Hamiltonian and failure of the first approach

The objective of the article is to introduce Entropy and Temperature in the
context of an abstract dynamical system and to present the state of research of
this objective. Concretely, let qk be, k = 1, 2, ...,n, the abstract variables of a
dynamical system:
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q̇k = fk (t,q) (1)

Note that in (1) q = (q1, q2, ..., qn). Then, Dirac’s Hamiltonian corresponding
to (1) is [1, 5]:

H (t,q,p) =

n∑
j=1

fj (t,q) · pj −
n∑

j=1

fj (t,q) · gj (t,q) + h (t,q) (2)

Such that:

n∑
k=1

Flk · fk (t,q) = −
∂gl (t,q)

∂t
− ∂h (t,q)

∂ql
(3)

Where in (2):

Flk (t,q) =
∂gl (t,q)

∂qk
− ∂gk (t,q)

∂ql
(4)

Note that the functions gj (t,q) and h (t,q) in (2-4) come from the La-
grangian [5]:

L (t,q, q̇) =

n∑
j=1

gj (t,q) · q̇j − h (t,q) (5)

The corresponding canonical equations to Hamiltonian (2) are, for k =
1, 2, ...,n [5]:

q̇k = fk (t,q) (6)

ṗk = ġk = −∂h (t,q)
∂qk

+

n∑
j=1

fj (t,q)
∂gj (t,q)

∂qk
(7)

Two basic hypotheses taht were made in [5] to insert Entropy S (t,q) and
Temperature T (t,q) are explained in the following.

Hypothesis 1 provided a way to find the functions gj (t,q) and h (t,q):

gk (t,q) =
∂χ (t,q)

∂qk
(8)

h (t,q) = −∂χ (t,q)

∂t
(9)

where χ (t,q) is a function to be found.
Hypothesis 2 inserted Entropy and Temperature in Hamiltonian (2):

n∑
j=1

fj (t,q)·gj (t,q)−h (t,q) =
n∑

j=1

fj (t,q)
∂χ (t,q)

∂qk
−∂χ (t,q)

∂t
= −T (t,q)·S (t,q)

(10)
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Then, Hamiltonian (2) becomes:

H (t,q,p) =

n∑
j=1

fj (t,q) · pj + T (t,q) · S (t,q) (11)

See [5] for subsequent hypotheses. In fact, Hypothesis 1 already fails because
when (8, 9) are substituted in Lagrangian (3):

L (t,q, q̇) =

n∑
j=1

∂χ (t,q)

∂qj
q̇j +

∂χ (t,q)

∂t
=

dχ (t,q)

dt
(12)

Then, from (12) the action A (t) =
∫ t2
t1
L (t,q, q̇) dt coincides with the func-

tion χ (t,q), and it is easy to demonstrate that the Hamilton-Jacobi equation
becomes 0 = 0.

Therefore, a new approach with new hypotheses must be stated in the fol-
lowing section.

3 Inclusion of Entropy in Dirac’s Hamiltonian: the new
approach

The new hypotheses are stated as 3 postulates. Again, if S (t,q) is Entropy and
T (t,q) is Temperature, then Postulate 1 consists in adding an new entropic
differential equation to the system (1):

Ṡ = fn+1 (t,q, S) (13)

Being defined the Temperature as:

T (t,q, S) =
∂H (t,q, S,p)

∂S
> 0 (14)

See below why Temperature does not depend on p. Note in addition in (13,
14) that a new moment pn+1 arises in the formalism, i.e, p = (p1, ..., pn, pn+1).
Then, calling x = (q, S), the new Hamiltonian, consequence of Postulate 1, is:

H (t,x,p) =

n+1∑
j=1

fj (t,x) · pj −
n+1∑
j=1

fj (t,x) · gj (t,x) + h (t,x) (15)

Postulate 2 introduces the restriction:

−
n+1∑
j=1

fj (t,x) · gj (t,x) + h (t,x) = 0 (16)

in Hamiltonian (15). Therefore, from Postulates 1 and 2, the Hamiltonian
becomes:
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H (t,x,p) =

n+1∑
j=1

fj (t,x) · pj =
n∑

j=1

fj (t,q) · pj + fn+1 (t,q, S) · pn+1 (17)

As a consequence of applying Postulates 1 and 2 to (4, 7), the corresponding
canonical equations to the Hamiltonian (17) become:

ẋk = fk (t,x) (18)

ṗk = ġk = −
n+1∑
j=1

∂fj (t,x)

∂xk
gj (t,x) (19)

Postulates 1 and 2 also provide the time derivative of the Hamiltonian (17)
by using its result in [5] and the new canonical equations (18, 19):

dH (t,x)

dt
=
∂H (t,x)

∂t
=

n+1∑
j=1

∂fj (t,x)

∂t
gj (t,x) (20)

And, from (14) and the n+1 canonical moment equation of (19), Temperature
becomes:

T (t,q, S) =
∂H (t,x,p)

∂S
= −ṗn+1 = −ġn+1 =

∂fn+1 (t,q, S)

∂S
gn+1 (t,q, S) > 0

(21)
Note, as announced above, that Temperature does not depend on the mo-

ments. Moreover, also Postulates 1 and 2 provide the way new to find the func-
tions gj (t,q) and h (t,q), by substituting 2 in (2, 4), for l = 1, 2, ...,n + 1 :

∂gl (t,x)

∂t
+

n+1∑
j=1

∂gl (t,x)

∂xj
fj (t,x) = ġl = −

n+1∑
j=1

∂fj (t,x)

∂xl
gj (t,x) (22)

Postulate 3 provides a generalized Gibbs-Duhem equation:

n+1∑
j=1

fj (t,x) · dpj = 0 (23)

Dividing (23) by dt , applying (19) for the moments and simplifying, (23)
becomes:

n+1∑
l=1

n+1∑
j=1

∂fj (t,x)

∂xl
gj (t,x) · fl (t,x) = 0 (24)

As a consequence of (23) in Hamiltonian (17):
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dH (t,x,p) =

n+1∑
j=1

pj · dfj (t,x) (25)

It is easy to demonstrate that dividing in (25) by dt , expanding ḟj (t,x),
applying canonical equations (18) and simplifying, Eq.(24) arises again.

Therefore, Eqs.(22, 24) provide n + 2 equations for the n + 2 unknown vari-
ables, i.e, for gj (t,x), j = 1, 2, ...,n + 1 , and for fn+1 (t,x).

4 Reversible Thermodynamics as a particular case of the
new approach

A crucial question arises: does the classical reversible Thermodynamics fit the
formalism presented? The answer is affirmative by identifying the Internal En-
ergy (U ) of the reversible Thermodynamics with the Hamiltonian (H ) (17).

Let j = 1, ..,n be, being respectively (qj , S) and (pj , T ) the extensive and
intensive thermodynamic variables, then:

U = H =

n∑
j=1

pj · qj + T · S (26)

Note in (26) that fj (t,q) = (±) qj (the sign depends on the physical inten-
sive variable sense), fn+1 (t,q, S) = S and pn+1 = T . Then, the corresponding
canonical equations (18, 19) are, for k = 1, ..,n:

q̇k = (±) qk; Ṡ = S (27)

ṗk = ġk = ∓gk = ∓pk; Ṫ = T (28)

Eqs. (27, 28) can provide any dynamic relationship among intensive/extensive
variables. In addition, taking into account the above identifications, fj (t,q) =
(±) qj , fn+1 (t,q, S) = S and pn+1 = T , their substitution in (24) and subsequent
simplification, the following equation arises:

Ṫ · S +

n∑
j=1

ṗj · qj = 0 (29)

which, after being multiplied by dt:

S · dT +

n∑
j=1

qj · dpj = 0 (30)

which is the classical Gibbs-Duhem equation of the reversible Thermody-
namics. Applying (30) to the Internal Energy-Hamiltonian (26), its differential
form arises:
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dU = dH = T · dS +

n∑
j=1

pj · dqj = 0 (31)

In other words, the formalism stated by Postulates 1, 2 and 3 embodies as a
particular case the reversible Thermodynamics.

5 Present state of the research

Note that Postulate 3 has been imposed as the (23) restriction (called as the
generalized Gibbs-Duhem equation) on the Hamiltonian (17). Jointly Postulates
1 and 2 the classical reversible Thermodynamics arises as a particular case. The
question is that the (23) restriction will never hold in general for the Hamiltonian
(17). However, the way to force that it holds is finding the unknown entropic
equation, fn+1 (t,q, S), as the solution of Eq. (23).

If in (23) the function fn+1 (t,q, S) is written explicitly, the equation that
must be held this function arises:

n∑
l=1

∂fn+1

∂ql
fl +

n∑
l=1

∂fn+1

∂S
fn+1 = − 1

gn+1

n∑
l=1

n∑
j=1

∂fj
∂ql

fl · gj (32)

In addition, (32) cannot be solved independently. It is coupled with Eqs.
(32), which are in the beginning presented again with the explicit writing of
fn+1 (t,q, S). On the one hand, for j = 1, 2, ...,n:

∂gj
∂t

+

n∑
l=1

∂gj
∂ql

fl +
∂gj
∂S

fn+1 = −
n∑

l=1

∂fl
∂ql

gl −
∂fn+1

∂qj
gn+1 (33)

And on the other hand, for j = n + 1 :

∂gn+1

∂t
+

n∑
l=1

∂gn+1

∂ql
fl +

∂gn+1

∂S
fn+1 = −∂fn+1

∂S
gn+1 (34)

Note in Eqs. (32-34) that fn+1 = fn+1 (t,q, S), fj = fj (t,q) for j = 1, ...,n,
and that gj = gj (t,q, S) for j = 1, ...,n + 1 due to in (22) Entropy is also
involved in the n + 1 equations.

Therefore, the state of the present research is to solve the coupled system of
equations (32-34). The solution of these n +2 functions would provide that (24)
holds, and then that both (23) and (25) also holds.

6 Conclusions

Note that the attempt to unify Dynamics and Thermodynamics has been a
constant intellectual strength along the twentieth century and along the years of
the present century, being the proposals by Prigogine the most emphasizing [2],
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without trying to underestimate the research of Haken by Sinergetics [4] or those
researches coming from the Irreversible Thermodynamics.

However, the approach here provided is radically different because it starts
from the Dirac’s Hamiltonian [1], which was developed by this physicist to de-
rive his famous equation to find the relativistic version of Quantum Mechanics.
Although this problem was applied for the electromagnetic field rather for func-
tions, i.e., for the case of dynamical systems, the use of this formalism has never
been used beyond a theoretical rarity topic [6, 7].

Therefore, keeping in mind the failure of Dirac’s Hamiltonian fully exploit
and, in addition, its nonlinear similarity with the Internal Energy of reversible
Thermodynamics (26), this author’s work has started to research the possibility
to develop a nonlinear Thermodynamics of abstract systems. The fact that the
reversible Thermodynamics holds the formalism is a first success that encourages
to follow this way.

However, it is also obvious that following that way implies to solve Eqs.
(32-34). Although they seem extremely complex to be solved simultaneously,
even in particular systems, perhaps some simplifying hypotheses could help to
solve them. Therefore, the intellectual strength must go on persevering on this
objective.
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Abstract. The ΛCDM cosmological model cannot explain the discrep-
ancy, currently referred as the Hubble tension, between the value ob-
tained by studying the early CMB, Ho= 67.4 Km/s/Mpc, and the one
obtained from the more recent supernovae, in the range 70 ≤Ho ≤ 76.
Using a recent revision of the concept of gravitational mass*, that in-
troduces a time dependence for it, we can explain the Ho-discrepancy
and interpret both, dark matter and dark energy, in terms of the revised
gravitational mass:
Dark matter is the gravitational mass acquired by the particles (”first
stars”) that collapsed to form a galaxy, and dark energy as the gravita-
tional mass acquired by the galaxies, tending to a constant at the present
epoch that is interpreted as the cosmological constant. (*Journal of Mod-
ern Physics. M.P. 2021).

Keywords: Hubble tension, dark matter, dark energy, gravitational
mass

We shall need, first of all, two basic equations, namely the total energy density
and the Friedman equation:

ρ(a) =
3H2

0

8πG
(
Ωm

a3
+ f(a)) (1)

ȧ2

a2
= H2

0 (
Ωm

a3
+
Ωk

a2
+ f(a)), (2)

though we shall assume Ωk = 0. In the current cosmological model the first
and second summands in the energy density represent dark matter and dark
energy respectively. The cosmological constant Λ is a case of dark energy, with
f(a) = Λ/3H2

0 .

1 The Hubble tension

The Planck collaboration (Planck 2018. Results. VI. Cosmological parameters)
studied the remote CMB radiation using the ΛCDM model that assumes f(a) =
Λ/3H2

0 = ΩΛ = 1−Ωm. They obtained precise estimations the basic cosmological
parameters: H0 = 67.4, Ωb = 0.0493, Ωm = 0.3157. However, when the nearest
objects were considered unexpected discrepancies ocurred: from a Cepheid-SNIa
sample Adam G. Riess (2022) obtained: H0 = 73.041.04, and from many different
samples one obtain Hubble constants in the range (70...76).
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2 The equation of the geodesics

It will be convenient to write the equation of the geodesics in the form given by
Havas-Goldberg 1962, ”Lorentz-invariant equations of motion of point masses in
the general theory of relativity”:

m
duµ
dτ

=M(τ)
∂U

∂xµ
(3)

M(τ) =
m

g(v, v)1/2
, U =

1

2
g(v, v) =

1

2
gµνv

µvν (4)

uµ =
dzµ

ds
, vµ =

dzµ

dτ
(5)

ds =
√
gµνdzµdzν , dτ =

√
ηµνdzµdzν (6)

where ds stands for the true metric and dτ for an auxiliar Minkowski metric.

2.1 Revision of the concepts of inertial, and gravitational mass.

Recently we have considered the constant ”m” as the inertial mass of a particle,
and the time dependent function M(τ) as its gravitational mass (Journal of
Modern Physics, 2021). Multiplying by the number density of particles n =
n0/a

3 we get the gravitational mass density ρ(a) = n(a)M(a) as a function of
the expansion factor.

We shall consider three epochs dominated by three kind of particles: atoms,
first stars and galaxies, considered all of them as point particles. We shall denote
the initial expansion factor of each epoch by: (a∗∗i , a

∗
i , ai), and we shall use

as independent variables the expansion factor ai corresponding to the galaxy
formation, and the quotients of expansion factors u and v defined as follows:
u = a∗∗i /a

∗
i , v = a∗i /ai, from which we get a∗∗i = aiuv, and a

∗
i = aiv.

We have obtainedM,ρ,Ωb, Ω∗m, Ωm and the gravitational mass fraction f(a)
as functions of the expansion factor ”a ” and the initial value ai, and fractions
of initial values u, v defined above:

g(a, ai) = (1 +
a3i
a3

)3 − 6
a3i
a3

(1 +
a3i
a3

) + 4
a
(
i9/2)

a(9/2)
, g(ai, ai) = 0 (7)

g(x) = (1 + x3)3 − 6x3(1 + x3) + 4x4.5 (8)

M(u, v, a, ai) = m(1 + α+
Ω2

b (u, v, ai)

18Ωm(u, v, ai)

a3i
a3
g(a, ai) (9)

f(u, v, a, ai) =
Ω2

b (u, v, ai)

18Ωm(u, v, ai)

g(a, ai
a3i

(10)

ρ(u, v, a, ai) =
3H2

o

8πG
(
Ωm(u, v, ai)

a3
+ f(u, v, a, ai)) (11)
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Ωm

Ωb
(u, v) = 1 +

1

18

g(u)

u3
+

g(v)/v3

18 + g(u)/u3
(12)

Ωb(u, v, ai) =

Ωm

Ωb
(u, v)

(Ωm

Ωb
(u, v))2 + g(1,ai)

18a3
i

(13)

Ω ∗m (u, v, ai) = Ωb(u, v, ai) +
1

18
Ωb(u, v, ai)

g(u)

u3
(14)

Ωm(u, v, ai) = Ω ∗m (u, v, ai) +
g(v)

g(u)

u3

v3
(15)

α(u, v, ai) =
Ωdm(u, v, ai)

Ωb(u, v, ai
, Ωdm = αΩb (16)

Ωm(u, v, ai) = Ωb(u, v, ai)(1 + α(u, v, ai)) (17)

H0(u, v, ai) = H0Λ

√
ΩΛ(1− ai)
B(u, v, ai)

(18)

B(u, v, ai) =

∫ 1

ai

f(u, v, a, ai)da (19)

B(u, v, ai) =
Ωb(u, v, ai)

2

18Ωm(u, v, ai)a3i
(1− 513

280
ai +

3

2
a3i −

8

7
a4.5i +

3

5
a6i −

1

8
a9i ) (20)

The product mα(u, v, ai) in equation (7) is the gravitational mass contained
in a galaxy, generated during the pregalactic epoch, with a < ai. This is our
explanation of the galactic dark matter.

Taking into account the Planck collaboration results (Astr.Aphys.2019):

(Ωb, Ωm, ΩΛ, H0Λ) = (0.049, 0.317, 0.683, 67.4) (21)

obtained assuming the ΛCDM model, that introduced the cosmological constant
(verifying Λ/3H2

0Λ = ΩΛ) we get the expansion factor ai at the beginning of the
galactic epoch, and using a = 1/(1+z) we can obtain the corresponding redshift
zi. The observed values for Ωb and Ωm must verify Ωm + f(u, v, 1, ai) = 1, and
substituting the gravitational mass fraction one gets the equation

Ωm +
Ω2

b

18Ωm

g(1, ai)

a3i
= 1 (22)

from which we obtain the expansion factor ai = 0.085 at the epoch of galaxy
formation, and using the relation a = 1/(1 + z) one gets the corresponding
redshift zi = 10.76.
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Finally , by using these values we shall give in the next tables the values of
z∗i , z

∗∗
i , Ωb, Ωm corresponding to values of the Hubble constant in the interval

70− 76 and for different values of v = 0.60, 0.56.

For v = 0.60 we have the first stars at redshift zi = 18.6, and free atoms at
zi = 18.60

u Ωb Ωm Ho z∗∗i
0.1854 0.0526146 0.52212 70.0005 104.76
0.2066 0.050606 0.388039 71.0004 93.9073
0.22 0.0478335 0.322069 72.0274 88.1266
0.23 0.0454214 0.282546 73.0876 84.2515
0.2369 0.0436911 0.259751 74.0009 81.7684
0.2433 0.0420811 0.259751 75.0012 79.5912
0.24885 0.0407014 0.227982 76.0007 77.7938

For v = 0.56 we have the first stars at redshift zi = 20.0084, and free atoms
at zi = 18.60

u Ωb Ωm Ho z∗∗i
0.18636 0.0526159 0.521887 70.0002 111.73
0.2034 0.0511497 0.414635 71.0176 102.286
0.2146 0.0490603 0.356985 72.0059 96.895
0.22325 0.0471032 0.319853 73.011 93.102
0.2302 0.0454144 0.294503 74.0051 90.261
0.23697 0.0437258 0.273403 75.0011 87.654
0.241301 0.0426415 0.261642 76.0007 86.063
Some references about the concept of mass:
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Bancroft’s GPS navigation solution: relativistic
interpretation

Ramón Serrano Montesinos and Juan Antonio Morales-Lladosa

Departament d’Astronomia i Astrof́ısica, Universitat de València, Spain

Abstract. In the context of Global Navigation Satellite Systems (GNSS),
a modern approach is that of Relativistic Positioning Systems (RPS).
The purpose of this contribution is to bring the (non-relativistic) the-
oretical foundations of current GNSSs closer to the RPS approach, by
recovering from the RPS coordinate transformation equation one of the
classical solutions to the location problem which is still used in current
GNSS receivers: Bancroft’s closed-form solution (with four emitters).
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1 Global Navigation Satellite Systems

There are currently four Global Navigation Satellite Systems (GNSS) in opera-
tion: GPS from the US, Galileo from the European Union, Glonass from Russia
and BeiDou from China. Each of these systems consists of an earth segment and
a constellation of 25 to 30 satellites with atomic clocks on board and which con-
tinuously transmit electromagnetic signals enconding information (ranging code,
navigation message,...). The system time is referenced to the Coordinated Uni-
versal Time (UTC) and positions are expressed in an earth-centered, earth-fixed
rotating reference frame (ECEF).

In a GNSS, the basic observable is the pseudorange, which is the apparent
distance to a visible satellite as inferred from the travel time of the emitted
signal. The emitter (satellite) sends a signal, the user receives it and correlates
it with a replica of that signal generated in the receiver to compute the travel
time of the signal. This time is multiplied by the speed of light in vacuum, c, to
obtain the distance to that satellite at the moment of signal emission. This is, of
course, an apparent distance because there are many effects that have not been
considered: satellite and receiver clock synchronisation errors, relativistic effects,
atmospheric effects and instrumental errors. So if the true geometric distance to
a visible satellite is about 20.000 km, my pseudorange measurement includes
other distances that have to be taken into account.

Apart from the pseudorange, the position of each satellite at signal emission
is also computed from the signal received (navigation message).
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1.1 GNSS navigation equations

The pseudorange1 to satellite j (Rj) is the user’s geometric distance to that
satellite (ρj), plus the receiver’s clock error (δt) and all other effects2 including
the satellite clock error, relativistic corrections, atmospheric effects, etc. (Dj):

Rj ≈
√
(xj − x)2 + (yj − y)2 + (zj − z)2︸ ︷︷ ︸

ρj

+cδt+Dj , j = 1, ..., n,

where {x, y, z} and {xj , yj , zj} are the user’s and satellite’s spatial coordinates,
respectively.

There are four unkowns, the user’s spatial coordinates and the user’s clock er-
ror, so we need at least 4 pseudorange measurements. In practice, measurements
from all visible satellites are considered and the solution to such an overdeter-
mined system is found by least-squares adjustment. The equations are linearised
around an approximate solution ρj0, which is found by solving the (simplified)
non-linear equations directly, using Bancroft’s method, for example. Once the
approximate location is known, the following linearised system of equations is
solved using least-squares:

Rj −Dj − ρ j
0 =

x0 − xj

ρ j
0

dx+
y0 − yj

ρ j
0

dy ++
z0 − zj

ρ j
0

dz + cδt, j = 1, ..., n.

2 Relativistic Positioning Systems

GNSSs achieve very high precision correcting for relativistic and for all other
effects. We have nothing against them as technological objects. But the principles
on which they are based are not satisfactory from a scientific perspective. In
contrast, Relativistic Positioning Systems (RPS) involve a purely relativistic
approach to positioning systems in general. This theory was developed more
than twenty years ago3 not only for its application to GNSS, but as a relativistic
theory for positioning systems in general that has additional advantages:

– any user can know its location in a 4D-coordinate system
– it aims to describe the user’s space-time trajectory (proper acceleration) and

the space-time itself (gravimetry, metric).

2.1 Positioning in Minkowski space-time

In Minkowski space-time4, a relativistic positioning system can be thought of as a
set of at least four emitters A (A = 1, 2, 3, 4) of world-lines γA(τ

A), broadcasting

1 In this section we follow the notation used in [1].
2 These effects are modelled and, in principle, can be computed from the navigation
message.

3 For the genesis and perspectives of RPS see Ref. [2].
4 In this section we follow the notation used in [3].
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their respective proper times τA by means of electromagnetic signals. In a RPS,
the basic observable is the set of four proper times {τA} received at an event x
by the user. These are the user’s emission coordinates. Suppose the four world-
lines γA(τ

A) are known in an inertial coordinate system {xα, α = 0, 1, 2, 3} with
origin O. Now we can refer the different 4-vectors that describe this system to
this reference frame (see Fig. 1 in [3]).

To solve the location problem, the 4 equations that we have to solve simply
express the light-like character of the 4-vector ma which is x (the user’s position
4-vector) minus γa (the position 4-vector of the satellite’s worldline):

(x− γA)2 = 0, ∀A, (1)

The solution to these equations, mapping the user’s emission coordinates to its
inertial coordinates, is what we may call the RPS coordinate transformation or
the RPS solution. As detailed in [3], these equations can be conveniently solved
by referring both the user’s position x and three of the emitters, say {γ1, γ2, γ3},
to the fourth one, γ4,

y = m4 = x− γ4,
ea = γa − γ4, a = 1, 2, 3,

(2)

and separating (1) into a system of three linear equations

ea · y = Ωa, a = 1, 2, 3, (3)

where Ωa = 1
2 (ea)

2 are the world-function scalars, and a quadratic equation

y2 = 0. (4)

The general solution to the underdetermined system (3) is of the form:

y = y∗ + λχ, (5)

where y∗ is the particular solution to the system, λ is a real parameter and

χ = ∗(e1 ∧ e2 ∧ e3) (6)

the configuration vector of the RPS. The particular solution is found by bringing
in an arbitrary vector ξ such that ξ · χ ̸= 0:

y∗ =
1

ξ · χ
i(ξ)H, (7)

with5

H = Ω1E
1 +Ω2E

2 +Ω3E
3,

E1 = ∗(e2 ∧ e3),
E2 = ∗(e3 ∧ e1),
E3 = ∗(e1 ∧ e2).

(8)

5 Where ∗ is the Hodge operator and ∧ the wedge or external product.



Bancroft’s GPS solution: relativistic interpretation 153

The general solution to the location problem (1) is obtained by introducing
(5) in the main quadratic equation (4) and solving for λ:

x = γ4 + y∗ + λχ, λ = − y2∗
(y∗ · χ) + ϵ̂

√
∆
, (9)

where

∆ = (y∗ · χ)2 − y2∗χ2, (10)

and ϵ̂ = ±1 is the orientation of the positioning system, which can take two
values depending on the configuration of the emitters as seen by the user. We
are solving a system of quadratic equations, so in general we expect to obtain
two solutions for a given set of emission coordinates. Identifying the correct one
is known as the bifurcation problem.

Bifurcation problem Depending on the causal character of the configuration
vector χ, we distinguish three situations6 (see Figs. 3, 4 and 5 in [4]):

– If χ is time-like, there is only one emission solution, the other is a reception
solution (the event P ′ would be on the opposite side of the configuration
hyperplane Γ ). In this case, the sign of ϵ̂ can be determined.

– If χ is light-like, there is only one valid solution (the other solution is degen-
erate). The sign of ϵ̂ can be determined.

– If χ is space-like, there are two valid emission solutions: in order to deter-
mine the sign of ϵ̂, additional observational information is necessary (relative
positions of emitters on the user’s celestial sphere).

In practical GPS applications, there is generally no bifurcation problem because
the valid solution is always the one that is closest to the earth radius.

3 Bancroft’s solution (4 satellites)

We will now talk about Bancroft’s classical GPS solution [5], but using the
concepts of RPS systems that we have just learned. Bancroft’s solution is still
used in current GNSS receivers as an initial approximate solution for the least-
squares algorithms that are implemented.

Bancroft first defines the user’s spatial coordinates, x⃗, and those of the n
satellites, s⃗i (for our purposes, 1 ≤ i ≤ n = 4). Then he introduces the pseudor-
ange measurements ti made by the user with respect to each of the satellites:

ti = d(x⃗, s⃗i) + b, (11)

where d(x⃗, s⃗i) is the geometric distance between the ith satellite and the user
and b what he calls the user clock’s offset.

6 Please refer to [4] for more details.
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Reinterpreting (11) as a past light-cone equation (with the user at its vertex),
we identify ti with the time coordinate, with respect to some coordinate system
{xα}, of the word-line of the ith emitter:

ti ↔ γti ,

and the clock’s offset b, with the inertial time coordinate of the user’s position
four-vector x:

b↔ t.

Bancroft now defines the four-vectors ai, which we identify as the emitters’
world-lines:

ai = (ti, s⃗i)↔ γi = (γti , γ⃗i).

He introduces a scalar product between four-vectors ⟨a, b⟩, which is equiva-
lent to the scalar product in Minkowski space-time, a · b, with metric signature
(−,+,+,+).

Bancroft’s solution vector y
1,2

= (−b
1,2
, x⃗

1,2
) can be readily identified with

the user’s position four-vector x of the RPS. These correspondences are summa-
rized in table 1.

Bancroft RPS

pseudorange ti γti
coordinate time

of emitter

data vector ai γi emitter worldline

clock offset b t
coordinate time

of user

solution vector y1,2 x
user position
four-vector

Table 1: Identifying Bancroft’s notation and concepts with those of the RPS
solution.

Now we are ready to write down the navigation equations solved by Bancroft,
using the RPS notation. These are none other than equations (1):

(x− γi)2 = 0, ∀i.

In order to solve this system of equations, Bancroft rewrites them with the help
of the following scalar:

ρ =
1

2
x2,
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row vectors:

1 =
(
1 1 1 1

)
,

r =
(
r1 r2 r3 r4

)
,

where ri =
1
2γ

2
i ,

and matrix:

A = (γ1 γ2 γ3 γ4),

where γi are column vectors.
The system (1) reads:

1

2
x2 − γi · x+

1

2
γ2i = 0 ∀i,

⇔ ρ1− xA+ r = 0,

or equivalently, provided that A is invertible:

x = ρ u+ v, (12)

where
u =1A−1,

v =rA−1.

Squaring (12) and substituting x2 = 2ρ:

Eρ2 + 2Fρ+G = 0,

where
E =u2,

F =u · v − 1,

G =v2.

Equation (12) is Bancroft’s solution to the problem, where u and v are known
from the emitters’ trajectories γi and ρ is obtained by solving equation (3). Here
we can distinguish the case where E = 0 (which, as we will see, corresponds to
a light-like configuration of the emitters):

E = 0⇒ ρ = − G

2F
,

and the cases where E ̸= 0 (which correspond to time-like and space-like emitter
configurations):

E ̸= 0⇒ ρ =
−F ±

√
F 2 − EG
E

. (13)

Bancroft does not make this dinstinction and implicitly assumes E ̸= 0, his
solution being equation (12) with ρ as in (13).
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4 Correspondence between Bancroft’s and the RPS
solution

We can now write both solutions and the correspondence between Bancroft’s
4-vectors and scalars and those of the RPS solution (Table 2). At this point we
can say that one of the keys to this correspondence is writing the inverse of the
matrix A as,

A−1 = [det(A)]−1


− ∗ (γ2 ∧ γ3 ∧ γ4)

∗(γ1 ∧ γ3 ∧ γ4)

− ∗ (γ1 ∧ γ2 ∧ γ4)

∗(γ1 ∧ γ2 ∧ γ3)

 , det(A) = − ∗ (γ1 ∧ γ2 ∧ γ3 ∧ γ4),

and choosing ξ = γ4.
Then, Brancroft’s and the RPS solution are expressed as:

Bancroft’s solution:

x = v +
−F ±

√
F 2 − EG
E

u .

RPS solution:

x = γ4 + y∗ −
y2∗

(y∗ · χ) + ϵ̂
√
(y∗ · χ)2 − y2∗χ2

χ .

Bancroft RPS (ξ = γ4)

u [det(A)]−1 χ

v y∗ − r4[det(A)]−1χ+ γ4

E [det(A)]−2 χ2

F [det(A)]−1 (y∗ · χ− r4[det(A)]−1 χ2)

G (y∗ − r4[det(A)]−1 χ)
2

Table 2: Correspondence between Bancroft’s vectors and scalars and those of
the RPS solution.

As we have already stated, Bancroft’s solution is not valid when E = 0, that
is, when the configuration vector χ is light-like. In contrast the RPS solution is
valid in any configuration.
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5 Conclusions

We think that current GNSS systems can benefit from the RPS approach to po-
sitioning. Their fundamental principles implicitly use relativistic concepts (such
as 4-vectors, Minkowski scalar product, etc.) that can be correctly interpreted
according to RPS theory. But RPS is much more, it’s a theory for positioning
systems in general that aims to describe the user’s space-time trajectory dy-
namically and gravitationally and compute its space-time metric. Ultimately, it
could transform relativity into an experimental branch of physics7.
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Abstract. The Kasner spacetime has played a significant role in the
initial development of modern cosmology, due to its straightforward yet
clever incorporation of spatial anisotropy into modified models for our
universe. Using the Cartan formalism, we derive fundamental analytical
results for the generalized (n + 1)D Kasner universe, which exhibit the
most prominent features of this spacetime.

The particular (2 + 1)D variant of this spacetime model so far has
remained largely unchartered. In this study, we aim to fill this gap
by explicitly deriving and investigating several essential aspects of the
(2 + 1)D Kasner spacetime geometry. Specifically, our efforts encompass
the derivation of fully analytic solutions for both, the timelike geodesic
equation, and the scalar wave equation within the (2+1)D Kasner back-
ground. Furthermore, we present some numerical simulations to highlight
the central characteristic properties of the model.

Keywords: classical general relativity, exact solutions, Riemannian ge-
ometries, mathematical theory of wave propagation

1 Introduction

In 1921, a mere five years after the inception of the theory of general relativ-
ity, the mathematician Edward Kasner (1878–1955) discovered an exact solu-
tion to Einstein’s vacuum field equations, representing a still homogeneous but
anisotropic universe without matter [1–3]. The corresponding spacetime metric
of this solution is simple yet highly effective for exploring the notable features of
such a universe, providing an elementary model of a spacetime having extreme
conditions and which may contract or expand.

Only recently the Kasner cosmological model has regained interest in the con-
text of f(T ) gravity, a theory encompassing an arbitrary function of the torsion
scalar, offering a novel explanation for the late-time universe acceleration [4].

In this study, our primary focus revolves around the Kasner model with two
spatial dimensions, allowing us to investigate its characteristic properties for
potential implementations in analogue models of gravity, see e.g. Ref. [5]. For
this purpose, the Cartan formalism will help us to efficiently derive interesting
analytical results and predictions for the generalized (n+ 1)D Kasner universe.
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Until now the (2 + 1)D spacetime variant of the Kasner universe has been
mainly overlooked. So a closer inspection is in order. Throughout this work, we
explicitly derive and examine some of the most intriguing aspects of this space-
time geometry. This includes obtaining fully analytic solutions for the timelike
geodesic equation—geodesics that are followed by massive particles—and solu-
tions for the scalar wave equation—the mathematical framework for describing
sound waves in acoustics—all within the (2 + 1)D Kasner background. To con-
clude the discussion, numerical simulations of the model will help to illustrate
the principal properties of this spacetime.

2 Geometrical Framework

As a starting point for a geometrical discussion of the (n+1)D Kasner spacetime
manifold M , we consider the following nonholonomic basis 1-forms θµ ∈ T ∗M :

θ0 = c dt, θi =

(
t

t0

)pi

dxi, i = 1, . . . , n, (1)

where the constants pi, i = 1, . . . , n, are the so-called Kasner exponents, entirely
defining the anisotropy of the model. Each Kasner exponent, pi, individually
fixes the expansion or contraction rate for the corresponding direction with time
evolving. However, we cannot arbitrarily choose these exponents due to physical
restrictions as will be demonstrated later on. Note that Greek-letter indices cover
the full range of spacetime components, i.e., µ = 0, 1, . . . , n, whereas the Latin
indices only cover the spatial components, i.e., i = 1, . . . , n. Further, we introduce
t0 > 0 as an arbitrary scale to render all factors in front of θi dimensionless. As
usual, c denotes the speed of light.

By construction, this frame (θ0, θ1, . . . , θn) will possess local flatness and
have orthonormality so that the associated metric in this frame is Minkowskian:
ĝgg = −θ0⊗ θ0 + θ1⊗ θ1 + · · ·+ θn⊗ θn. As can be seen, we have chosen a metric
with signature (−,+, . . . ,+), so that the time component agrees with µ = 0.

Now, for a torsionless theory, Cartan’s structure equations serve to determine
the associated curvature 1- and 2-forms in this frame:

τµ = dθµ + ωµ
ν ∧ θν = 0,

Ωµ
ν = dωµ

ν + ωµ
λ ∧ ωλ

ν = 1
2 R̂

µ
νρσ θ

ρ ∧ θσ,

where d is the exterior derivative, ωµ
ν denotes the rotation 1-forms, and R̂µ

νρσ

are the local components of the Riemann curvature tensor.
After a straightforward computation of the Riemann tensor and performing

the usual contraction, we obtain the Ricci tensor

R̂RR =
1

c2t2

n∑
i=1

pi

−(pi − 1) θ0⊗ θ0+

 n∑
j=1

pj − 1

 θi⊗ θi
 . (2)



160 Michael M. Tung

Then, Einstein’s field equations in the absence of energy-matter require space-
time to be Ricci-flat, which implies R̂RR = 0. Thus, for the general Kasner model
the following physical conditions emerge:

n∑
i=1

p2i =

n∑
i=1

pi and

n∑
i=1

pi = 1, (3)

corresponding to the time (θ0) and space components (θi) in Eq. (2), respectively.
These conditions, Eqs. (3), suggest that the parameter space of allowed Kasner
exponents is restricted to the intersection of the unit (n − 1)-sphere with a
hyperplane. Obviously, for n ≥ 3 the exponents therefore may vary continuously
(including the possibility for the pi’s to have positive and negative values). For
n = 2, however, the only possible solutions (given by the intersection of the unit
circle p21+p

2
2 = 1 and the line p2 = 1−p1) are the discrete parameter pairs (0, 1)

and (1, 0), as shown in Fig. 1.

p1

p2

p2

1
C p2

2
D 1

p1 C p2 D 1

O

n D 2

Fig. 1: Graphical representation of the solution space for the Kasner exponents
in n = 2 spatial dimensions due to conditions Eq. (3).

In the following discussion, for the (2 + 1)D Kasner universe, we will hence-
forth take the exponents to have the values p1 = 0 and p2 = 1. Therefore, in
local Cartesian coordinates, the spacetime metric has the form

ggg = −c2 dt⊗ dt+ dx⊗ dx+

(
t

t0

)2

dy ⊗ dy. (4)

For this case, also all components of the Riemann tensor vanish, and (2 + 1)D
Kasner spacetime is always flat, although representing a universe with rich fea-
tures such as being anisotropic and non-static.

3 Particle Dynamics

In this section, we will briefly sketch the dynamics of a massive particle in the
(2+1)D Kasner universe. All physically viable trajectories are following timelike
geodesic paths, which as usual may be found by a variational principle, see Fig. 2.
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x

ct

y

O
t D t1

t D t2

Fig. 2: In the (2+ 1)D Kasner universe a massive particle, connecting spacetime
points (events) at t = t1 and t = t2, will travel along a timelike geodesic path.
The corresponding Lagrangian, which governs the motion within this spacetime
via a variational principle, is given by Eq. (5).

Accordingly, to derive the geodesic equation of a massive test body, one can
directly use a free-particle action. So next we take the Kasner metric, Eq. (4),
to obtain the following Lagrangian assuming a test mass of m = 1:

L(t, ẋ, ẏ) = −c2 + ẋ2 +

(
t

t0

)2

ẏ2, (5)

and where the dot denotes the derivative with respect to the time coordinate t
in the local frame. Then, the variational principle—also called the principle of
maximal aging—is given by the variation of the action integral with respect to
the coordinates x and y, respectively. For i = 1, 2 the expression

δ

δxi

∫
dtL = 0

yields explicit results for x = x1(t) and y = x2(t), given the initial conditions
x0 = x1(t0), y0 = x2(t0), vx = x1(t0), and vy = x2(t0).

Eliminating the dependence on t for these solutions, one readily obtains the
geodesic curves in the xy-plane

y(x) = y0 + vy t0

[
1− 1

x−x0

vxt0
+ 1

]
. (6)

Some observations are in order: (i) varying the initial position x0, the shape of the
curve does not change but translation invariance occurs in x-direction; (ii) there
is damping in y-direction due to the change in scale; (iii) the velocity in y-
direction will fall off as 1/t2 yielding a maximal possible height of y∞ = y0+vyt0.
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4 Wave Dynamics

For a discussion of scalar wave propagation in curved spacetime, again it will
be convenient to depart from a variational principle. However, contrary to the
case of a localized point particle, here it will be necessary to consider an action
principle over a bounded spacetime domain, Ω ⊆ M , over which the wave will
spread, viz. Fig. 3. The general infinitesimal volume element is given by dvolg =
θ0∧ θ1∧ . . .∧ θn, which for the (n+1)D Kasner universe is dvolg = θ0∧ θ1∧ θ2 =
(t/t0)cdt ∧ dx ∧ dy, as produced by direct substitution of Eq. (1) with p1 = 0
and p2 = 1. This clearly indicates that a spacetime volume grows linearly with
progressing time.

x

ct

y

O

� � M
�

Fig. 3: The variational principle of wave dynamics describes the propagation of
scalar waves within a compact and bound region of spacetime, Ω ⊆ M . For
the (2 + 1)D Kasner universe, a spacetime volume will expand linearly as time
evolves. The scalar wave equation, governing all of its dynamics, derives from
Eq. (7) by varying the wave potential ϕ. Typically, the boundary conditions are
specified on ∂Ω.

According to the variational principle governing wave dynamics, the following
action is stationary with respect to variations of the scalar wave potential, ϕ :
M → R, such that [6]:

δ

δϕ

∫
Ω⊆M

dvolg ggg(∇ϕ,∇ϕ) = 0, (7)

where ggg is the metric of the smooth manifold M , and ∇ denotes the associated
covariant derivative. In particular, ∇ϕ in Eq. (7) reduces to the partial derivative
since ϕ is a scalar quantity. Therefore it is ∇ϕ = gµν ∂µϕ ∂ν , which in acoustics
coincides with wave-particle velocity and sound pressure in the local coordinate
base ∂µ = ∂xµ = ∂/∂xµ, see also Ref. [6]. The integrand of Eq. (7) is just the
quadratic kinetic-energy term generalized to spacetime.

In geometrical language, the Euler-Lagrange equations solving Eq. (7) lead
to ∗d∗dϕ = 0, where ∗ is the Hodge dual, see e.g. Ref. [7, p. 21]. However,
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in local coordinates, this operation just takes the form of the Laplace-Beltrami
differential operator on the curved spacetime manifold (M,ggg), denoted by ∆M ,
and acting on the wave potential. Substitution of the specific metric, Eq. (4),
yields after some simplification the governing wave equation:

∆Mϕ = − 1

c2

(
∂2ϕ

∂t2
+

1

t

∂ϕ

∂t

)
+
∂2ϕ

∂x2
+

(
t0
t

)2
∂2ϕ

∂y2
= 0. (8)

Eq. (8) can next be tackled by the separation-of-variables technique, making the
ansatz ϕ(t, x, y) = ϕ0(t)ϕ1(x)ϕ2(y). A reasonable assumption for the component
travelling in x-direction (where no scaling occurs) is ϕ1(x) = eikxx. Then, it
can be shown that the propagation in y-direction will necessarily also be har-
monic, i.e., ϕ2(y) = eikyy. Lastly, the final differential equation determining the
remaining wave component, ϕ0(t), will depend on the scale parameter t0, and
the wave numbers kx and ky. Note that we also adopt natural units where the
speed of light is c = 1. Furthermore, with plausible initial conditions for proto-
type waves, the time component ϕ0(t) may still be cast into analytical form in
terms of logarithms, trigonometric and Bessel functions.

Figs. 4 and 5 illustrate the simplest scenarios, with prototype waves travelling
in x- and y-direction, respectively. Here, the solutions in x-direction, analytically
expressed in terms of Bessel functions, clearly display oscillatory behaviour with
damping. As expected, in y-direction, where the change of scale occurs, a dra-
matically different behaviour emerges.
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Fig. 4: Time-dependent potential ϕ0 for the test wave travelling in x-direction
(kx = 1, ky = 0), with the scale parameter conveniently set t0 = 1. The initial
conditions are ϕ0(0) = 1 and ϕ′0(0) = 0.
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Fig. 5: Time-dependent potential ϕ0 for the test wave travelling in y-direction
(kx = 0, ky = 1), with the scale parameter conveniently set t0 = 1. The initial
conditions are ϕ0(1) = 1 and ϕ′0(1) = 0.

5 Summary and Outlook

In this presentation we have explored various geometric and physical aspects of
(2+1)-dimensional Kasner spacetime. Initially, by employing Cartan’s formalism,
we first derived general expressions for the Ricci tensor in the suitable (n+ 1)-
dimensional nonholonomic frame. Interestingly, the case for n = 2 does not
exhibit singularities. However, the model of this universe becomes degenerate
at t = 0 due to the spacetime volume linearly shrinking as it approaches earlier
times, i.e., t→ 0. Additionally, we have identified only two possible combinations
permitted for the Kasner exponents. As a consequence, one of the two spatial
directions expands, causing distances parallel to this orientation to grow linearly
with time, while the other direction remains unaffected, partially preserving its
Euclidean nature.

In the next part we investigated the dynamical properties of the (2 + 1)D
Kasner model by analyzing the timelike geodesic path of a massive test particle
moving within this spacetime background. By applying a variational principle
that maximizes the length between two events in (2 + 1)D Kasner spacetime,
we find that fully analytical expressions for the geodesic trajectories may be
derived. These curves exhibit characteristic asymptotic barriers in the direction
of expansion, indicating that a test particle faces increasing difficulty in catching
up with the expanding background. It is important to note that these barriers
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are not genuine event horizons of the underlying spacetime since their location
depends on the initial position and speed of each test particle.

Finally, we examined (2 + 1)D Kasner spacetime using prototype test waves
featuring harmonic behavior propagating in the x-direction. Consequently, the
y-dependent part of the potential must also exhibit harmonic behavior. This
requirement, where both spatial parts of the potential demonstrate simple har-
monic dependence simultaneously, reflects a symmetry property of the underly-
ing spacetime. Accordingly, for the harmonic test case, all non-trivial behaviour
lies in the time-dependent potential ϕ0, which was separated from the total wave
potential through the technique of separation of variables. As a result, we are
able to derive fully analytical closed-form expressions for ϕ0 and have provided
some numerical examples simulating elementary waves.

In an extension of this study, we plan to consider more sophisticated phe-
nomena of wave propagation, perhaps diagonal or otherwise oblique wave prop-
agation with respect to the predetermined direction of expansion. These results
might not be analytically feasible and a more thorough numerical simulation of
the models will be necessary.

To conclude, one of the main motivation of this work has been to path the
way for an implementation of an acoustic analogue model of gravity for the
Kasner universe using metamaterials. Acoustic metamaterials are specially en-
gineered materials that demonstrate unique properties in manipulating sound
waves. They are designed to control and manipulate the propagation of acoustic
waves—in a way usually not possible with naturally occurring materials, see e.g.
Ref. [8]. In this context, the acoustic analogue implementation of the Kasner
universe will be a challenging step forward in a series of published studies on
the implementation of interesting spacetimes [6, 9–13], which may provide ideal
laboratory testing grounds for probing exotic spacetime scenarios.
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versitat Politècnica de València (PAID-11-21 and PAID-11-22).

References

1. Kasner, E.: Geometrical Theorems on Einstein’s Cosmological Equations. Am. J.
Math. 43(4), 217–221 (1921). https://doi.org/10.2307/2370192
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Abstract. Since the 1980s oak decline is severely affecting two main
species of trees in Iberia: the holm oaks (Quercus ilex) and cork oaks
(Quercus suber). In this work, we discuss a network mathematical model
to analyze the propagation of P. cinnamomi in a “dehesa” system up to
some thousands of hectares in extension. The model is fitted to epidemi-
ological data obtained from surveys in Extremadura. By using a particle
swarm optimization method we show that the preferred scenario corre-
sponds to a very fast propagation of the disease (some months to one
year in a hectare) followed by a slow death of the oaks (they survive
an average of 56 years to the P. cinnamomi infection). Our model can
have important consequences for the management and treatment of this
disease as well as in reforestation plannings

Keywords: Forests epidemiology, Phytophthora cinnamomi, SIR model,
PSO optimization

1 Introduction

The genus Phytophthora groups numerous species of pseudofungi (organisms
similar to fungi but not related phylogenetically with them) causing pests in
many species of wild plants and crops. The pathogen Phytophthora infestans
was responsible for an epidemic of potato downy mildew in the 1840s, causing
a severe famine. Consequently, there was a large movement of the population,
since around one million people emigrated, mainly to the US and another million
would perish during this period. In 1875 the founder of plant pathology, H.
Anton de Bary, described the genus Phytophthora which means plant destroyer
in Greek.
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Specifically, the species P. cinnamomi (hereinafter Pc) is considered one of
the most dangerous invasive species in the world [1]. Although its presence in the
Iberian Peninsula has been known for decades [2], in recent years its activity has
intensified in such a way that it threatens the very existence of the “dehesa” as
an ecosystem [3,5]. The expansion of the epidemic is favoured by the combination
of high temperatures and humidity [3]. To propose a model of propagation and
control of Pc it is important to know, even in broad strokes, its transmission
mechanism, as well as the effects on the host plant. Pc attacks the roots of its
host causing its necrosis. This process can last for decades, although sometimes
it is much faster and the trees show signs of decay in a short time, such as
chlorosis in their leaves.

As in fungi, Pc develops a structure of very fine filaments that constitute
the so-called mycelium. In these ramifications appear the sporangia that contain
about 20 or 30 zoospores. These zoospores are biflagellate and can move through
water and using chemotaxis they reach the roots of another tree which they
colonize.

According to what has been indicated, the humidity in the soil favours the
rapid spread of PC as well as the displacement of cattle in the pasture. Cattle
transport Pc spores from one tree to another, and water further aids in the
dispersal of the pathogen. For this reason, the trees that grow in areas of lower
elevation, where puddles form in the rainy season, are the first to get sick and
show signs of PC infection. But the dynamics of the “seca” (as the disease caused
by Pc is commonly known) can be more complex, because trees already infected,
and with rotten roots, suffer more from the effects of drought. unable to absorb
nutrients from the soil, are affected by water stress and gradually succumb to
the disease.

Several treatments can prevent and stop the disease. The most common is
potassium phosphite, but this chemical compound has been forbidden as fer-
tilizer. Various studies [4] propose the use of fosetyl aluminium as an alterna-
tive due to its proven preventive and therapeutic efficacy. A research group on
agroforestry pathology from the University of Córdoba, Spain demonstrated the
usefulness of this treatment for holm oaks and cork oaks [4]

With these basic notions of the phytopathology of Pc, we will propose in the
next section (Sec. 2) an epidemiological model for the spread of this pathogen
in the “dehesas” of Extremadura. This model can guide specialists in this field
in decision-making that could help to combat this plague that is destroying the
traditional ecosystem of the “dehesa”. In Sec. 3 we will show how to fit the SIR
model to real data on the incidence of the oak decline epidemic. This will be
achieved by using the particle swarm optimization heuristic method. This work
ends with some conclusions and guidelines for future work in Sec. 4.

2 Mathematical modelling of the Pc epidemic.

In this section we will propose the mathematical model to simulate the Pc epi-
demic in a “dehesa”. The initial objective will be to fit this model with the real
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data on tree mortality on a given site. We will use the data corresponding to
the “dehesa” of Haza de la Concepción, located on the Malpartida de Plasencia
road and belonging to the Diputación de Cáceres. This farm has an area of 4
hectares and has been studied for decades. It is known that the holm oaks and
cork oaks located there have been sick with Pc and have been dying prematurely
from this epidemic. The number of trees (trees still alive) depending on the year
is shown in the table 1. To fit these data we will start using a SIR model with

Year Feet

1956 230

1973 177

1984 140

1997 121

2002 105

2006 102

2010 95

2012 91

2016 79

2019 73

2022 68

Table 1: Census of live trees (feet) in the experimental site of Haza de la Con-
cepción.

three states, as as shown in figure 1. These states would be:

– Susceptible: A healthy tree that can contract the “seca” disease if its roots
are reached by zoospores.

– Infected: Tree whose roots have been colonized by the pathogen Pc and
has developed the disease.

– State R: In this model, the state R does not correspond to those recovered
but to the trees that have died from “seca”. We assume that the trees have
not received any treatment and that there is no possibility of recovery.

In the epidemic evolution algorithm, we consider that any tree on the farm, that
is infected, can infect any other susceptible tree with probability p per month.
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Fig. 1: Diagram of the SIR model for the Pc epidemic in a “dehesa” (here p is the
probability that the pathogen is transmitted from a tree infected to a susceptible
one while γ is the mortality rate of infected trees).

The infection is spread by water currents at the time of rains or by the movement
of cattle and other animals.

In the case of not very extensive farms, such as Haza de la Concepción, it can
be assumed that the probability of infection does not depend on the distance
between the susceptible and the infected. On farms and extensive areas of several
thousand hectares, it is more realistic to consider a function p(r) of the form:

p(r) = p0

(σ
r

)d
, (1)

where σ has distance dimensions and p0, d are dimensionless [5]. This would
mean carrying out a fit with four parameters, that is, p0, d, σ and γ. But on
the 4-hectare farm that we will study as an example only we will use the model
with p and γ as parameters. In any case, to find optimal adjustments for these
parameters it is necessary to resort to a metaheuristic algorithm such as the one
described below.

2.1 Particle swarm optimization

One of the most widely used algorithms for fitting non-differentiable models is
called PSO, particle swarm optimization. This algorithm is attributed Kennedy,
Eberhart and Shi [6] and simulates the motion of a swarm of bees or a flock
of birds through the space of parameters to find the best solution. In this algo-
rithm, a large number N of possible solutions is constructed. characterized by
their coordinates in the parameter space, xi, i = 1, . . . , N . In our problem, for
example, each of these vectors, called particles, would have dimension two. As
objective function in model fitting, the root mean square distance of the model
predictions to the data is used. In our case, f : R2 → R.

The PSO algorithm is built, then, with the following steps:
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– The coordinates of the particles are initialized to values inside a hypercube
H with vertices defined by the values of the reasonably possible minimums
of the parameters and by the maximum possible values of these parameters.
In our case, we would have a square in the parameter plane with vertices
(pmin, γmin) and (pmax, γmax).

– The best known position of the ith-particle is initialized to the initial po-
sition, i. e., bi = xi while if f(xi) < f(g), the best global position of the
swarm would also become xi, i.e., g = xi.

– The velocity of the particles is initialized to random values within the hy-
percube defined by the vertices: xmax − xmin and xmin − xmax.

– After initializing the positions and velocities of the particles, the evolution
algorithm is carried out until a satisfactory solution is found. In this algo-
rithm, for each particle and in each iteration, the positions and velocities are
updated as follows:

vi ←− ω vi + ϕb rb (bi − xi) + ϕg rg (g − xi) , (2)

xi ←− xi + vi . (3)

Here ω is the coefficient of inertia that modulates the trend of the particle to
continue in the same direction and sense of passage of the current iteration.
The cognitive coefficient, ϕb is a measure of the particle’s tendency to go
to its best position, among those found so far. Similarly, the social coeffi-
cient, ϕg, is the parameter that regulates the tendency of the particles to go
towards the best position in the swarm. On the other hand, rb and rg are
pseudorandom numbers chosen for each particle and each iteration and uni-
formly distributed between 0 and 1. The second equation simply describes
the displacement of the particles in the parameter space according to their
velocities. The parameters ω, ϕb and ϕg are chosen at the beginning of the
fitting program. These are typically less than 1, but otherwise, your choice
is based on arguments, merely, heuristical.

– Each time the position of a particle is updated, we check if it is a better
solution than its best position so far. moment, bi. This means that the value
of the target function has been reduced, i.e.,

f(xi) < f(bi)

. In that case, the new position supersedes the best position of that particle:

bi ←− xi ; . (4)

– Similarly, we would check if the position xi is better than the best global
swarm solution found so far, i. e., we check if f(xi) < f(g). In that case,
we would replace the best global position with the new position of the ith
particle:

g←− xi ; . (5)
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The key to the success of this algorithm is in eq. (2) that simulates the social
behavior of the swarm. The new velocity vector of the particle is a composition of
three contributions: (i) a fraction ω of the previous velocity vector (ii) a fraction
ϕgrg of the relative position vector from the current position of the particle to
the best position of the swarm (iii) a fraction ϕbrb of the relative position vector
from the current position to the best position found by that particle.

In the swarm intelligence interpretation, it can be said that ω represents in-
ertia, ϕg, cooperation, and ϕb, the memory of the best position found by the
particle. The balance between the exploration carried out by the particles in
the parameter space and the approach to the best solutions is what, intuitively,
allows the algorithm to work. In any case, we must bear in mind that in the
algorithms metaheuristics, convergence to the best solution is not assured and
exploration may stall at a local minimum. To avoid these pathologies, it is ad-
visable to carry out tests with several triads of coefficients ω, ϕb and ϕg.

The swarm of particles is initially dispersed and uniformly distributed in the
solution space. When convergence occurs, some particles stay at or very close to
the optimal solution. while others continue to explore.

We have used Fortran code to implement the PSO algorithm applied to the
search of the best parameters that fit the SIR model to the data from the table
1. In the next section we will discuss the results of this simulation.

3 Results

To fit the SIR model to the data in the 1 table, we have used an agent-based
model to simulate the transmission of Pc from infected trees to healthy trees.
In this model, the trees occupy the vertices of a complete graph and starts from
an initial state in which all trees except one are susceptible. That is, we start
from a configuration with only an infected tree and the rest are susceptible. The
model evolution algorithm checks for each link that connects an infected with
a susceptible if the disease is transmitted during that month (one month is our
time unit). For the infected, it is also verified if the tree dies that month, which in
the SIR model occurs with probability γ. In this process, the feet still surviving
the epidemic are S+ I. Evolution takes place a certain number of iterations and
is averaged over them to reduce the effect of statistical fluctuations. We have
performed 20 iterations for each pair of parameters p, γ. A subroutine is called
in the main program to return a prediction of the evolution of the epidemic for
a set of given parameters (particle in the language of the PSO algorithm). The
parameters of the PSO algorithm that we will use are:

– Number of particles: 100,
– Number of iterations of the PSO algorithm: 50,
– Coefficient of inertia, ω = 0.8,
– Cognitive coefficient, ϕb = 0.1,
– Social coefficient, ϕg = 0.1.

The best fit to the data in the 1 table is shown in figure 2.
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Fig. 2: Data for the number of feet (live trees) and fit to a SIR model. Here
time is measured in months since January 1956, the circles are the data and the
dashed line is the model prediction.

Fig. 3: Prediction for the number of infected trees as a function of time in months.
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We note that the fit is very good. The coefficients of the best fit according
to the PSO algorithm are:

p = 0.078 per month ,

γ = 0.00147 per month .
(6)

That means that Phytophthora spreads very quickly through the pasture, on the
scale of the average life of a holm oak or cork oak, but that infected trees have
a life expectancy:

T =
1

γ
= 56.7 years . (7)

This life expectancy is much less than that of an oak or cork oak healthy and in
top condition.

A prediction of the mathematical model, for which no data exists with which
to compare, is the number of infected trees (based on a single infected tree in
January 1956 as a hypothesis). In figure 3 we show this prediction. It is observed
that the PSO algorithm favours a scenario in which practically all of the trees
on the farm end up infected with Pc in only five months from the start of the
epidemic to subsequently slowly succumbing to the effects of the pathogen. These
results are preliminary and should be validated with data from other pastures,
which which will allow us to exclude the possibility of a local minimum. Likewise,
it is necessary to consider the initial number of infected trees as an additional
adjustment parameter.

4 Discussion and conclusions.

In this work we have proposed an epidemiological mathematical model to analyze
the propagation of the pseudofungi Phytophthora cinnamomi in a “dehesa”. The
species P. cinnamomi is considered one of the most dangerous invasive species in
the world [1] and it, in particular, attacks holm oaks and cork oaks, which are the
most common trees in the “dehesas”. The corresponding epidemic of oak decline
(or “seca” as it is popularly known in Spain) is causing an important mortality of
oaks and this is so serious that the “dehesa” ecosystem could disappear in a few
decades. This would have, and it is already having, many consequences from the
economic point of view, as well as for the ecology of the region of Extremadura,
agriculture and cattle raising.

To study the progression of the epidemic we have retrieved data on the
number of dead and surviving trees at the ‘Haza de la Concepción’ site in Ex-
tremadura. This site is known for being attacked by the P. cinnamomi epidemic
for decades and this has caused the loss of a 70.4% of the initial trees back in
1956. To analyze this data we have performed a fit to a SIR model by using PSO
optimization. Our results depict a scenario in which the pathogen propagates
very fast to all the trees in the “dehesa” in a period of 5 months. Anyway, the
oak trees can survive an average of 56.7 years to the “seca” disease caused by
this pseudofungi.
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To improve this initial mathematical model and apply it to larger “dehesas”
we could consider a distance-dependent infection probability that takes into
account the displacement of cattle, wild animals and other factors as in Eq.
1. The elevation of the terrain is also a key factor in this epidemic because
lower areas are more likely flooded. Therefore, in these areas the Pc zoospores
propagate more easily than in areas of higher elevation. Oak trees should be
labelled with an elevation parameter and the probability of infection could be
made linearly dependent on this parameter. Work along this line is in progress
and will be published elsewhere.
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Abstract. Bayesian probabilistic models for COVID-19 transmission
dynamics have been very efficient to interpret early data from the begin-
ning of the pandemics. Using this approach, we showed that the impact of
the non-pharmacological measures was clearly different in each country.
We further extended this initial model for the analysis of multiple peri-
ods of different transmission rates, enabling the inclusion of an arbitrary
number of non-pharmacological measures, and considering the impact of
the vaccination and of the different virus variants on the transmission
dynamics of the disease (paper currently under preparation).
A key element of the model are the probabilistic curves used to describe
the immunity evolution of the population after the vaccination or the
infection. The purpose of this paper is the description of the parameters
of these curves that describe the degree and duration of the vaccination
immunity, and the combinations of values with which the model obtains
predictions for the number of daily deaths that best fit the reported data.

Keywords: COVID-19 transmission dynamics, vaccination, immunity.

1 Introduction

As of 23 July 2023, over 768 million confirmed COVID-19 cases and over 6.9
million deaths have been reported worldwide [1]. In Spain, 121,852 persons have
already died from the disease [2]. Although the COVID-19 pandemic is officially
over, the virus is still active, and we need to have efficient mathematical models
of the transmission dynamics to be ready for periodic recurrence, appearance of
new virus variants, or any other unwanted future scenarios. From the beginning
of the pandemic, different approaches were reported to model the transmission
dynamics of the virus in the population. Among them, Bayesian probabilistic
models were very efficient to interpret early incomplete data [3].

We applied this approach to analyse the impact of non-pharmacological mea-
sures in different countries [4], as these were the only strategies to control the
spread of the disease. The initial model was extended throughout the pandemic
in order to include key features such as the possibility of defining an unlimited
number of non-pharmacological measures, modelling the impact of detection rate
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in the transmission, or predicting cases and deaths in hospitals (manuscript in
preparation). But towards the end of 2020 two key aspects had a dramatic effect
on COVID-19 transmission dynamics: massive vaccination of the population,
and the appearance of different virus variants. The challenge was to include in
the model the positive impact of the vaccination on the evolution of the disease,
taking into account the immunity of the recovered population and considering
specific transmission parameters for the different virus variants.

Different studies have estimated the evolution in time of the protection pro-
vided by vaccination based on clinical data as well as on the concentration of
antibodies and other molecules of the immune system [5–8]. Such studies show
important aspects that need to be considered to model the impact of vaccination
on transmission dynamics. Basically, after vaccination, the level of protection
against infection (immunity) increases until reaching a maximum value, which
remains at a certain level during a period of time, and at some point, if no ad-
ditional doses are applied, starts to decay. In addition, these studies show that
immunity provided by vaccination is less effective against the variant omicron.

Here we propose the use of probabilistic curves to estimate the degree and
duration of the vaccination impact on the transmission, considering the different
vaccine doses. We show the effect of using different vaccination parameters on
the general transmission model and the results of applying this model on data
from different European countries.

2 Methodology

2.1 Bayesian model for COVID-19 transmission dynamics

We have used a Bayesian probabilistic SIR model in which the transitions be-
tween the different states (susceptible, infected, recovered, dead) are described by
specific parameters and probability distributions over time [3, 4]. The expected
number of new infections Ii occurring in each day i is defined as a function
of the number of infected individuals Ij in the previous days, their probability
of infecting other individuals after i-j days according to a serial interval (SI)
distribution, and the reproduction number (Rt) in the day i (Equation 1).

Ii = (Rt)i ·
i−1∑
j=1

(Ij ·SIi−j) (1)

The reproduction number (Rt) describes the total number of persons that
can be infected by each newly infected individual in average. The value of (Rt)
at a given day i is determined by an initial value R0 and a set of factors αk that
quantify the effect of all non-pharmacological measures that are active on that
day i as well as other events/conditions that can impact the virus transmission
(Equation 2).

(Rt)i = R0 · e−
∑

k αk (2)
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The Serial Interval (SI) distribution (Figure 1a) describes the probability
of when a newly infected individual is more likely to transmit the disease to
another person. This distribution was estimated as a Gamma distribution g ∼
Gamma(6.5, 0.62) based on data from early epidemics [3].

Fig. 1: Serial Interval (a) and Infection to Death (b) probability distributions.

Finally, the expected number of deaths Di in each day i is a function of the
number of infections Ij occurring in the previous days, the estimated infection
fatality ratio (IFR) for each country, and the probability of occurrence of death
in day i-j after infection according to a previously calculated infection-to-death
(ITD) probability distribution (Equation 3).

Di =

i−1∑
j=1

(Ij · IFR · ITDi−j) (3)

The infection fatality ratio (IFR) is the probability of death for an infected case,
and it has been calculated for each country from clinical data as previously
described [4].

The Infection to Death (ITD) distribution (Figure 1b) describes the proba-
bility of when a fatality is more likely to occur after infection. This distribution
was estimated as the combination of two gamma distributions, representing the
incubation period (infection to onset) and the time between onset of symp-
toms and death (onset to death), and is given by π ∼ Gamma(5.1, 0.86) +
Gamma(17.8, 0.45) according to data from early epidemics [3].

The above-described model (Equations 1-3) estimates the new infected indi-
viduals and deaths for each day as a function of a set of parameters that will
be optimized so that the model provides the best possible description of real
data. These parameters are: i) the initial infected individuals (I0) during the
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first 6 days of the studied period, which usually starts 30 days before the first 10
deaths; ii) the initial value of the reproduction number (R0), and iii) the factors
αk describing the impact of the measures and conditions that are applied in
each period defined by the user. The values of the parameters are sampled from
Bayesian prior distributions by using a Markov Chain Monte Carlo (MCMC)
method in order to get the best possible fit of the model to the observed number
of daily deaths, which are assumed to follow a negative binomial distribution, as
previously described [3, 4].

2.2 Impact of vaccination and virus variants on transmission
dynamics

The impact of vaccination in the transmission can be described by a reduction
of the reproduction number by the relative amount of the initial population
N0 that is not susceptible of being infected due to the protective effect of the
vaccination. The same is true also for the immunity acquired after infection. Both
types of immunity contribute to the estimation of the reproduction number with
a reduction factor (Equation 4), in which Immi−1 represents the total amount
of immune population (calculated on the previous day for practical purposes).

(Rt)i = R0 · e−
∑

k αk · (1− (Immi−1/N0)) (4)

The calculation of the amount of immune population (Immi−1) should take
into account important aspects: i) vaccination does not provide immediate im-
munity; ii) vaccinated and infected individuals are immune against infection
during an undetermined period of time; and iii) immunity provided by vacci-
nation depends on the efficiency of vaccine and the virus variant. Thus, the
amount of immune population (Immi) is calculated here as a function of the
reported number of individuals vaccinated on previous days at each dose type
(V acc1j , V acc2j , V acc3j), the probability of having acquired immunity in day
i-j after vaccination according to a precalculated distribution for each dose type
(V 1TImm, V 2Timm, V 3TImm), and the efficiency of the vaccine against each
virus variant, according to the reported proportion of variants each day (IRvari)
(Equation 5). The value Immi also includes the number of infected people in pre-
vious days and the probability of retaining immunity since the time of infection.
To avoid double counting in the case of infected individuals that are vaccinated,
here we have included only detected cases when this number is larger than the
number of vaccinated people.

Immi =

i−1∑
j=1

(IRvarj · (V acc1j · V 1TImmi−j + V acc2j · V 2TImmi−j+

V acc3j · V 3TImmi−j) + Ij · ITImmi−j) (5)

The V 1TImm, V 2ITmm, V 3TImm distributions describe the probability
of being immune at a given time after each vaccination dose. These were defined
here based on approaches from other studies and on empirical data related to the
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effectiveness of the vaccines (more curves could be defined for additional vacci-
nation doses). Several factors define the parameters of the immunity probability
distribution curves related to the vaccination:

– Time to reach the highest immunity after each vaccine dose.
– Highest immunity against infection after each vaccine dose.
– Period of highest immunity after each vaccine dose.
– Period of immunity decay from highest to lowest immunity.
– Lowest immunity against infection after immunity decay.

Figure 2 shows some examples of immunity curves for the individuals that
have received 2 or 3 doses (V 2TImm, V 3TImm) when using specific values for
the different parameters in three different scenarios: (a) All vaccine doses are
applied on time, before the immunity of the previous doses start to decay; (b)
only two vaccine doses (no booster) are applied; and (c) the booster is delayed
and is applied when the immunity from the second vaccine dose has decayed
to its minimum value. Figure 2 also includes the curve for immunity decay in
infected people (d). The periods of increase and decrease of immunity are defined
as truncated gaussians, and the periods of maximum and minimum immunity
are just constant values.

Additionally, the infection fatality ratio (IFR), initially assumed to be a con-
stant value for each country during the entire studied period, is actually variable
in time given that vaccinated individuals that are infected have lower probabil-
ity of death. In addition, IFR can be different for each virus variant. Thus, IFR
will depend on the percentage of vaccinated population and the proportion of
infections for the different virus variants on a given day (Equation 6).

Di =

i−1∑
j=1

(Ij · IFRj ·ITDi−j) (6)

3 Results

3.1 Defining the optimal parameters for the immunity probability
curves

The model has been applied to available data from a total of 30 European coun-
tries using different combinations of the parameters that define the vaccination
immunity curves. Initial values for these parameters have been obtained from
empirical data documented in different sources and from available information
about the effectiveness of the vaccines used in the European countries [9, 10].
From these initial values, the optimal combination of parameters has been found
by adjusting some of them to get the best fit results of the model for different
countries.

The values of the parameters that provide the best fit for the majority of the
European countries are shown in Table 1.
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Fig. 2: Evolution of the immunity against infection in three different situations:
when all vaccine doses are applied on time (a), when only two vaccine doses (no
booster) are applied (b) and when the booster is delayed (c). Curve for immunity
decay in infected people ITImm (d).

3.2 Application of the model to COVID-19 transmission dynamics
in Spain

The above-described model, including the effect of vaccination and the new vari-
ants, has been applied to the available data of COVID-19 pandemics in Spain
in the period from January 1st, 2020 to October 31st, 2022. The vaccination
immunity model has been adjusted using different combinations of values for
the parameters from Table 1. Here we show fit results for two scenarios, defined
by variations in three of the parameters, as documented in Table 2.

– Scenario #1: Best fit (parameter values from Table 1).
– Scenario #2: Pessimistic scenario: reduced value for the highest immunity

after the full vaccination, reduced period of immunity.

Figure 3 shows the predicted cumulative number of deaths (median with 95%
credible interval) in comparison with the real data for the two scenarios. With
the values from Table 1 (scenario #1), the predictions from the model replicate
well the evolution of the number of reported deaths in the whole period of time.
In the other scenario, the predictions deviate from the real data in the first
months of 2021, when the massive vaccination of the population started to show
its positive impact on reducing the spread of the disease.
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Table 1: Parameters of the vaccination immunity curves.

Table 2: Parameters of the vaccination immunity curves.

4 Discussion

There is evidence that there are differences in the effect of the vaccination be-
tween seropositive (i.e., recovered from a COVID-19 infection) and seronegative
individuals [8], and that this effect is also different depending on the age [11].
These factors are not considered in our model, where we assume common vacci-
nation parameters for the whole population. This is consistent with other sim-
plifications of the model, in which, for example, age weighted values for the
infection fatality ratio (IFR) are used.

On the other side, while the initial value of the reproduction number (R0) and
the factors that quantify the impact of the non-pharmacological interventions
are optimised during the fit process, the parameters that define the vaccination
immunity curves are predefined as constant values in each fit run. Future versions
of the model will include these parameters to be optimized during the fit process.
The challenge is the limited availability of epidemiological data for the major-
ity of countries, which is increasingly scarce since the COVID-19 pandemics is
officially over.
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Fig. 3: Data fit for the cumulated number of deaths in Spain in the period from
01/01/2020 to 31/10/2022 with different vaccination parameters: best fit (1)
compared to the result of assuming a reduced effect of the vaccination (2).

5 Conclusions

Bayesian inference models are very efficient to model transmission dynamics of
infectious agents in complex scenarios, like in COVID-19. These models can be
used to estimate the impact of non-pharmacological measures or other events
that can affect the virus transmission. The versatility of these models makes
it feasible to include different scenarios like vaccination or new variants. We
have used a realistic distribution probability curve to describe the acquisition
of immunity after vaccination, which provides very good fitting of the model
to the available epidemiological data. This tool can be easily adapted to future
situations and be ready for the appearance of new variants in which vaccination
may have different effect.
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Abstract. A wound is caused when the of the integrity of living tissue
in the body is compromised. The body repairs a wound in overlapping
stages, namely, homeostasis, inflammation, proliferation, and remodel-
ing. In this paper we deal with the formation of the provisional matrix
in the proliferation and maturation stages. The model is based on a
system of six ordinary differential equations. It is constructed using as-
sumptions and parameter values from the medical literature. A global
sensitivity analysis is performed to determine which parameters cause
the largest variations in the solutions. Also, since the reported data has
large variations a system of stochastic differential equations is introduced
and solved numerically. The models can help test hypothesis about the
different species active and their interaction and importance.

Keywords: wound healing, mathematical model, differential equations

1 Introduction

Wounds, whether caused by cuts or impacts, happen very frequently. Most of
them are minor and require little care, but more serious wounds can take a long
time to heal or even fail to heal. Mathematical models are very important to
understand the processes involved and to find how to improve the healing mech-
anisms, with the consequent benefits to humans and animals suffering wounds.
The mechanisms in which the body repairs a wound consists of four overlapping
stages: Homeostasis, during which, within minutes, blood clots form and the
bleeding stops; inflammation, in which a first provisional matrix forms but the
main process is to remove pathogens and debris; proliferation, during which the
turnover of the provisional matrix proceeds and new tissues are built; and re-
modeling, in which the new tissue slowly gains strength and flexibility as collagen
fibers reorganize, the tissue remodels, matures and strengthens. Mathematical
modeling is a mean to help understand the processes and interactions involved
and check theories and hypotheses that are difficult or even impossible to test
under experimentation. Ordinary differential equation models are a useful tool
for studying dynamics over time. Previous studies including mathematical mod-
els of wound healing are: Reynolds et al. [17] who focused on inflammation and
anti-inflammation with their state variables being activated phagocytes, tissue
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damage, and anti-inflammatory mediators. Cooper et al. [3] built a model ex-
panding on the Reynolds model with the inflammation state variable replaced
by the more specialized inflammatory variables, neutrophils and macrophages.
Torres et al. [23] utilize these cell dynamics and compare with experimental re-
sults. Some studies that modeled the proliferation and remodeling stages are
Jin et al. [10] and Segal et al. [20]. Jin et al. incorporate macrophages, MMP-9,
TGF-β, fibroblasts, and collagen to model the healing process after a myocar-
dial infarction. Segal et al. [20] construct a model incorporating inflammation,
pathogens, fibroblasts, and collagen. In the next sections we present a model for
the proliferative stage.

2 Proliferative Stage

In the proliferative stage the focus is shifted from removing debris and pathogens
to rebuilding and improving the provisional matrix. An important immunoreg-
ulatory cytokine, TGF-β, causes fibroblasts to migrate to the wound by chemo-
taxis. TGF-β is produced by macrophages,neutrophils, fibroblasts,and myofi-
broblasts. The production of TGF-β is also enhanced by the process of efferocy-
tosis. These fibroblasts produce the major protein component of the ECM which
is collagen. Through the influence of TGF-β, fibroblasts can differentiate into a
more specialized cell known as a myofibroblast which also produces collagen but
also α-smooth muscle actin which causes the edges of the wound to contract.

Proteases play another important part of the proliferative phase. More specif-
ically, matrix metalloproteinases (MMPs) break down collagen. This contributes
to the turn over of collagen as the wound heals. There are different types
of MMPs such as MMP-1, MMP-3, and MMP-9. MMPs can be produced by
macrophages, neutrophils, fibroblasts, and myofibroblasts. TGF-β induces the
expression of tissue inhibitors of matrix metalloproteinases (TIMPS) which in-
hibit MMPs ability to break down collagen.

TGF-β is a cytokine that contributes to the anti-inflammatory processes.
We incorporate the production of TGF-β by M2 macrophages with the term,
kβM2M2. The production from efferocytosis is represented by kβapAN (M1+M2).
The other terms kβNN , kβFFkβMyMy, and µβTβ will represent the production
of TGF−β from neutrophils, production via fibroblasts, and exit rate of TGF-β,
respectively.

Incorporating these mechanisms we get the following differential equation

dTβ
dt

= kβNN + kβapAN (M1 +M2) + kβM2M2 + kβFF + kβMyMy − µβTβ .

Estrogen mediation effects will be also taken into consideration for the prolif-
erative portion. According to Zhou et al. [25], presence of estrogen is associated
with an increase production of TGF-β. Adding the effect of estrogen we get the
updated equation:
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dTβ
dt

= [kβNN+kβapAN (M1+M2)+kβM2M2+kβFF+kβMyMy](1+kβeE)−µβTβ .

MMPs are produced by M1 and M2 macrophages [6, 9], neutrophils [7, 12],
fibroblasts [8, 21], and myofibroblasts [14, 22]. In addition to TGF-β’s ability
to influence migration of fibroblasts to produce collagen, Leivonen et al. [13]
notes that TGF-β also plays a role in down regulating the expression of MMPs.
They can do this by inducing the expression of tissue inhibitors of MMPs
(TIMPs).This inhibition is incorporated into theMMP equation by including the
inhibition term 1

1+(
Tβ

Tβinh
)2
. The production via M1, M2, N, F, and My is repre-

sented by kMMPM1M1, kMMPM2M2, kMMPNN , kMMPFF , and kMMPMyMy,
respectively. Finally the exit term for MMPs are represented by µMMPMMP .

These give the following equation:

dMMP

dt
=
kMMPM1M1 + kMMPM2M2 + kMMPNN + kMMPFF + kMMPMyMy

1 + (
Tβ

Tβinh
)2

− µMMPMMP .

2.1 Fibroblast and Myofibroblast Equations

For the fibroblast equation the migration to the wound via chemotaxis from
TGF-β is represented by the term cFβTβ , and then after these cells migrate,
they can proliferate [16, 19]. This is represented by the term pFF . This prolif-
eration may be enhanced by the presence of TGF-β. This is represented by the
term kFβTβF . Fibroblasts can then differentiate into myofibroblasts (dFF ) and
this is a process that can also be enhanced by the presence of TGF-β [18, 24]
(kMyFβFTβ). Fibroblasts that do not differentiate either leave the wound or
commit apoptosis. The exit term is represented by µFF .

Taking these mechanisms into account, the differential equation for fibrob-
lasts is constructed as the following:

dF

dt
= cFβTβ + pFF + kFβTβF − dFF − kMyFβFTβ − µFF.

For myofibroblasts, we have the differentiation of fibroblasts (dfF +kMyFβFTβ)
and the exit term µmyMy giving the following equation:

dMy

dt
= dFF + kMyFβFTβ − µmyMy.

Fibroblasts and myofibroblasts secrete different types of collagen including
collagen type I and type III [1]. Type III collagen is a weaker form of colla-
gen than type I. At the beginning stages of extracellular matrix reformation,
type III. collagen is produced, but is later replaced by stronger type I colla-
gen [4]. The presence of TGF-β enhances the process of collagen secretion, so
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the secretion of type I collagen with and without the enhancement of TGF-β
is represented by kcwf (F +My)(1 + kctbTβ) + kcmyMy. Collagen is defined as a
percentage with 0 indicating no collagen in the wound and 1 indicating collagen
has filled the wound. The state of existing collagen will affect the rate at which
collagen is formed and broken down. To account for this, a collagen deposition
multiplier was implemented and defined as I(CI + CIII) = 1

1+ea(CI+CIII−b)
. A

similar inhibition is also implemented for degradation by MMPs. Here the term
1 − 1

1+ea(CIII+CI−b) is used. After collagen type III collagen comes into contact

with MMPs and is broken down, it is assumed that type III collagen will be
deposited in its place by fibroblasts and myofibroblasts. Finally, the negative
effect on the ECM from by-products of neutrophils are taken into account for
collagen type III by the term dcnCIIIN .

Taking into account these mechanisms, the following is the resulting equa-
tions for collagen type I and collagen type III:

dCIII

dt
=
kcwf (F +My)(1 + kctbTβ) + kcmyMy

1 + ea(CIII+CI−b)

− dcnCIIIN − dcMmpMMPCIII(1−
1

1 + ea(CIII+CI−b)
)

dCI

dt
= kcsf

MMPCIII(F +My)

1 + ea(CIII+CI−b)

where CIII + CI ≤ 1.

3 Final Equations

The final system for the proliferation and remodeling stage is the following:

dTβ
dt

= kβNN + kβapAN (M1 +M2) + kβM2M2 + kβFF + kβMyMy

− µβTβ

dMMP

dt
=
kMMPM1M1 + kMMPM2M2 + kMMPNN + kMMPFF + kMMPMyMy

1 + (
Tβ

Tβinh
)2

− µMMPMMP

dF

dt
= cFβTβ + pFF + kFβTβF − dFF − kMyFβFTβ − µFF

dMy

dt
= dFF + kMyFβFTβ − µmyMy

dCIII

dt
=
kcwf (F +My)(1 + kctbTβ) + kcmyMy

1 + ea(CIII+CI−b)

− dcnCIIIN − dcMmpMMPCIII(1−
1

1 + ea(CIII+CI−b)
)

dCI

dt
= kcsf

MMPCIII(F +My)

1 + ea(CIII+CI−b)
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4 Proliferation and Remodeling stage parameters

In order to estimate parameter values, the following assumptions were used in
addition to the data from an immunohistochemistry experiment in Kajikawa et
al. [11]:

1. Fibroblasts peak between day 7 and day 14 [2, 20]
2. Myofibroblasts peak after fibroblasts peak
3. Collagen finishes being deposited by day 56 [20]
4. MMPs peak around day 5 [10]

In order to use the data, the data for collagen type I and collagen type III was
scaled. In a normal state a pre-wounded area has a certain amount of different
type of collagen. Collagen type I encompasses a larger amount. For some type of
tissue this is around 80 percent, and collagen type III encompasses 20 percent or
less [5, 15]. Using the assumption that collagen finishes being deposited by day
56, the signal on the last day of the data in Kajikawa et al. [11] is scaled so that
these values are 0.8 and 0.2 for collagen I and collagen III, respectively. The the
rest of the values are scaled using the same factor giving the proportion value in
the wound.Using the assumptions and the new data a parameter set is found.

5 Global sensitivity analysis for proliferation and
remodeling stage

Global sensitivity analysis for the whole model was conducted with respect to
total collagen, that is, CI +CIII . In order to help reduce the sampling space, the
parameters associated with the smallest sensitivity indices for total inflamma-
tion variable average where left out. For the parameters associated with higher
indices, the same range that was used is used for the inflammation sensitivity
analysis was used again here.

Parameters that resulted in a higher sensitivity index were kmmpn (produc-
tion of MMPs by neutrophils), kpg (growth rate of pathogens), ummp (decay
rate of MMPs), dcn (destruction of type III collagen by byproducts of neu-
trophils) , sb (source of background immune response), kem (estrogen increase
in the phagocytic abilities of macrophages), and kmmpm2 (production of MMPs
by M2 macrophages).

5.1 Stochastic Differential Equation System

Next a random process was implemented for each state variable equation as be-
fore, giving a stochastic differential equation system. Let the random processes
WTβ(t),Wmmp(t),WF (t),WMy(t),WC3(t), andWC1(t) be independent standard
Brownian motions affecting the densities of Tβ ,MMP , F,My, CIII , and CI , re-
spectively. Similarly to the inflammation system, the white noise terms propor-
tional to the state variable are implemented for each equation. The stochastic
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differential equation system for the proliferation and remodeling variables is as
follows:

dTβ = [kβNN + kβapAN (M1 +M2) + kβM2M2 + kβFF + kβMyMy − µβTβ ] dt

+σTβdWTβ(t)

dMMP = [
kMMPM1M1 + kMMPM2M2 + kMMPNN + kMMPFF + kMMPMyMy

1 + (
Tβ

Tβinh
)2

−µMMPMMP ] dt+ σMMP dWmmp(t)

dF = [cFβTβ + pFF + kFβTβF − dFF − kMyFβFTβ − µFF ] dt+ σFdFWF (t)

dMy = [dFF + kMyFβFTβ − µmyMy] dt+ σMydWMy(t)

dCIII = [
kcwf (F +My)(1 + kctbTβ) + kcmyMy

1 + ea(CIII+CI−b)
− dcnCIIIN

−dcMmpMMPCIII(1−
1

1 + ea(CIII+CI−b)
)] dt+ σCIIIdWC3(t)

dCI = [kcsf
MMPCIII(F +My)

1 + ea(CIII+CI−b)
] dt+ σCIdWC1(t)

Realizations were simulated for σ = 0.1 using Milstein method. Some realiza-
tions were simulated showing fluctuations in the peak of M1 macrophages and
resulting low and high values for collagen type I. The mean of 50, 1000, and
5000 simulations of each variable was analyzed. These means are identical to the
deterministic solution.Then the result of taking the mean over 60 days for each
iteration is analyzed, the mean for each variable is bounded between a certain
range.

6 Conclusions

We have presented a mathematical model based on ordinary differential equa-
tions of the proliferation phase of wound healing. The model takes into account
the most important processes, immune system cells and factors as reported in
the literature. The dynamics of the wound healing process is compared to exper-
imental data. The FAST global sensitivity indices show which parameters have
to be measured more accurately, especially when investigating non-typical heal-
ing responses. Random biological fluctuations are always present, and if large
enough, may cause a delay in the remodeling stage. Stochastic differential equa-
tions are introduced to deal with the variability in the variables, errors and
unknown factors involved.

Wound healing is a very complicated process and simplifications are neces-
sary, but still results compare well with data.
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2 Molecular and Clinical Oncology Department, Hospital Universitari Arnau de
Vilanova, Valencia, Spain

3 Microbiology Department, Hospital Universitari Arnau de Vilanova, Valencia
anconpei@eio.upv.es

Abstract. Patients with cancer are at higher risk of manifesting severe
disease and high mortality with COVID-19 virus infection than the non-
cancer population. SARS-CoV-2 vaccines have been tested in healthy
adult populations. However, specific data on their ability to generate
antibodies and cellular immune response in cancer patients receiving
anti-tumor treatments are still lacking. In this article, we analyze the
usefulness of sparse multivariate methods for the evaluation of immune
response in oncology patients receiving anti-tumor treatment and who
have received the anti-SARS-CoV2 vaccine during the COVID-19 pan-
demic. To do so, we will analyze how each set of molecules can be reduced
to a smaller set to obtain the underlying patterns among the data. In
addition, the humoral and cellular immune response will be related to
the level of specific antibodies in the subsample of patients who received
the second dose of anti-COVID 19 vaccines. Numerical and graphical
results will illustrate the performance and advantages of sparse multi-
variate methods, and specific sets of molecules will be identified as po-
tential markers of the level of antibodies against COVID 19 in oncology
patients.

Keywords: Sparse multivariate methods

1 Introduction

The emergence in December 2019 of the new virus known as Coronavirus (SARS-
CoV-2) had devastating consequences worldwide. Although control measures
such as the use of masks, physical distancing and isolation were implemented,
these actions were not sufficient to stop the spread of the virus. In response
to this situation, vaccine development efforts were intensified with the aim of
reducing the spread and mortality associated with the virus. As progress has been
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made in understanding the efficacy of mRNA-based vaccines, the importance
of evaluating their immune response in special patient groups, such as those
diagnosed with neoplastic diseases and under active treatment, has also been
recognized.

Neoplastic diseases refer to any presence of tumors or neoplasms in the body,
which can be benign or malignant, and are characterized by abnormal and un-
controlled cell growth. Patients with neoplastic disease represent a particularly
vulnerable population, with an increased risk of acquiring SARS-CoV-2 virus
infections and suffering a more severe course of disease. However, until now, the
efficacy of vaccines in these patients has been a matter of debate due to their ex-
clusion from the initial clinical studies that led to the approval of mRNA-based
vaccines.

Previous research has suggested that the immune response generated by vac-
cines in patients with solid cancer may be diminished compared to healthy in-
dividuals. In addition, it has been observed that those undergoing treatments
such as chemotherapy and immunotherapy may have lower levels of antibodies
compared to those receiving other types of therapies due to a different reaction
of their immune system [6].

The immune response is a reaction that occurs within an organism for the
purpose of defense against foreign invaders (viruses, bacteria, tumor cells, etc.).
The human immune system consists of a complex network of cells and molecules,
including different types of T-lymphocytes (cytokine producers) and B-lymphocytes
(antibody producers), which interact to fight foreign agents. Likewise, antibodies,
also known as immunoglobulins, are considered key proteins in the functioning
of the adaptive immune response. For the production and creation of these anti-
bodies is the vaccine, designed to stimulate a specific immune response against
a particular pathogen or its components [4]. The immune response triggered by
vaccination is not only limited to the elimination of the pathogen present in the
vaccine, but also has a long-lasting effect on the individual’s immune system.
This is the basis for the development of immunological memory, which allows
the immune system to remember the exposure to the pathogen and respond
more quickly and effectively in future encounters with the same infectious agent
(Montoya, 2021).

Consequently, the analysis of cellular and humoral immunity (antibody gen-
eration) generates large data sets due to the number of variables or molecules
identified. However, these data sets cannot be treated by classical multivari-
ate dimension reduction methods, given the high number of variables over the
number of patients analysed.

In light of the above, this work aims to examine whether cancer patients in
active treatment can develop immunity against the SARS-CoV-2 virus through
vaccination.

This generic objective has been divided into three specific objectives:

1. To examine differences in Immune Response between different cancer pa-
tients’ profiles
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2. To study the relationship between SARS-CoV-2 antibodies and patients’
cellular response

2 Methods

2.1 Participants

The database used in this study contains relevant information from oncology
patients under active treatment. These data, obtained from actual patients, in-
clude detailed information on their immune response using various cellular indi-
cators. In addition, it is recorded whether the information was collected before
the patient received any vaccine or after administering the second dose against
COVID-19.

First, the data include patient characteristics, such as age, sex, cancer lo-
cation, type of treatment and dose (unvaccinated or second dose). Also, the
measurement of specific IgG antibody levels against the SARS-CoV-2 virus
(Anti SARS CoV 2) has been recorded. Finally, there is the cellular response
block, the most extensive data set in the database. It includes variables such as
CD3, CD4, CD8, CD3 CD56, CD3 central memory, etc. However, for this study,
neither the percentage of Apoptosis nor the Total value are considered since they
are not the objective of interest of the study. In addition, variables with zero
variability have been eliminated. Therefore, although the database contains 94
observations and 219 variables, the number of variables was reduced to 139 after
excluding the variables above.

2.2 Sparse Partial Least Squares Regression (sPLS)

The methods for sparse PLS are based on reducing the dimensionality of two
data sets measured on the same observations while proposing a selection of
variables. The procedure for introducing this sparse approach to identify the
most relevant variables distinguishes the various methods, which are structured
in one or two phases. The guidelines for sparse PLS are not intended to replace
the classical PLS method proposed by [5] and the subsequent improvements in
this line of work but rather to provide tools for the selection of variables useful
for the analysis of large data sets.

Recently, a new approach to sPLS analysis has been proposed based on in-
troducing Lasso penalties in the factor loadings vectors obtained by PLS when
performing the SVD decomposition (singular value decomposition or diagonali-
sation). These l1 (lasso) penalties are extracted on each pair of factor loadings
vectors in each of the dimensions of the analysis [1]. This approach is integrated
into the package mixOmics, which integrates a two-step procedure described
into a single step for variable selection and dimensionality reduction based on a
modification of the PLS method [2].

Next, it is shown how this method is based on the SVD decomposition as-
sociated with the PLS method. Any matrix Mpxq of rank r can be decomposed
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into three matrices U , ∆ and V T , as exposed: M = U∆V T , where U and V T

are orthonormal matrices and ∆ is a diagonal matrix whose r elements on the
diagonal correspond to the eigenvalues of the MTM and MMT matrices. Thus,
the present sPLS method is based on the definition of a matrix M such that
M = XTY such that the column vectors of matrices U and V are the factor
loadings of X and Y , respectively.

Based on this approach, in this method for sPLS, it is interesting to penalize
both factor loading vectors, u sub k and v sub k, so that variable selection is
performed in both matrices. This property is of particular interest since it is
intended to facilitate the interpretation of the factor loading vectors.

Thus, the optimisation problem is based on the minimisation of the Frobenius
norm between the product of matricesM = XTY and the factor loadings vectors
u and v, for each dimension h,

min ||Mh − uhv′h||
2
F + gλ1

(uh) + gλ2
(vh)

These two penalty parameters ghλ1
and ghλ2

can be selected simultaneously for
each dimension h by calculating the root mean squared error prediction criterion
(RMSEP) by cross-validation k − fold or leave-one-out cross-validation leave-
one-out. However, in practical terms it is simpler to select the number of non-zero
variables in each dimension h and for each vector of factor loadings uh, vh, or
both, as proposed in the method for sparse PCA included in the package elastic
net [7].

Usually, the number of extracted dimensions is small to facilitate the in-
terpretation of the results. A quantitative criterion to evaluate the number of
dimensions to extract as a result of the sPLS method is the assessment of the
marginal contribution of each latent variable to the predictive ability of the
model (Tenenhaus, 1998), known as Q2

h.
To select the most relevant variables in each component, a grid vector of

values equispaced between 5 and 50 variables is created, in intervals of 5 by 5
variables. This vector contains different numbers of variables to be retained in
each of the components. During PLS component extraction, the model is tested
with each of these numbers of variables selected using the criterion of minimizing
the Mean Absolute Error (MAE).

3 Results and Discussion

The results of the analyses selected to address each of the application objectives
are shown below. Figure 1 shows that the production of antibodies against the
virus depends mainly on vaccination, but not on the tumour’s location. Nor
does it depend on other variables related to the patient’s characteristics and the
treatment, although it is not shown in the work due to lack of space.

The graph shows how the variable representing SARS-CoV-2 antibodies (Y )
has a small weight in both the first and second components. This shows the poor
relationship of the COVID antibodies with the cellular response, as indicated by
the Q2 graph, which shows the model’s predictive capacity and the MAE error.
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Fig. 1: SARS-CoV-2 antibodies were measured before vaccination and after the
second dose of vaccination.

Fig. 2: sPLS Weightings Graph (1st and 2nd component).
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On the other hand, the factor scores of both the cellular response and the
Y antibodies are shown coloured according to the type of cancer. In both cases,
there does not appear to be a significant weight of cancer type on cellular re-
sponse and Covid antibodies.

Fig. 3: sPLS Scores Graph (1st and 2nd component), according to cancer loca-
tion.

Therefore, when analysing the cellular response at different antibody levels,
the application of sparse techniques such as sPLS has made it possible to reduce
the data from 72 variables to two components of 45 variables each. Although
these do not explain much, CD3 or combinations of CD3 stand out as the most
important. It can also be seen that the levels of central memory cells and TEMRA
are more significant regarding the difference in the ranks of antibodies against
the virus.

4 Conclusions

Throughout this work, the fundamentals of regularised regression methods have
been reviewed, and the latest methodological proposals for specific multivariate
methods have been synthetically presented. Including penalties in the objective
functions associated with the optimisation problems generated by dimensional-
ity reduction techniques has opened a very promising field of study. However,
the theoretical formulation of these methods does not guarantee their appli-
cability in other fields of study. Each method studied in this work shows how
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the implementation of each methodology is conditioned by the algorithm ca-
pable of solving the optimisation problem associated with each technique, and
its consequent practical characteristics, such as computational requirements or
determination of the model fitting parameters.

In the biomedical sciences, the scientific community relies on data sets gener-
ated by technological data collection systems. Adapting these data to the func-
tionalities offered by the statistical packages that finally implement the sparse
multivariate methods is a key element in selecting one method or another. In
this sense, increasing and improving the existing documentation on sparse multi-
variate methods is advisable to promote their correct application and interpreta-
tion. On the other hand, it is advisable to provide the scientific community with
standardised and contrasted procedures to assess the suitability of these sparse
multivariate methods for each research question and the required characteristics
of the available data sets.
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2. Lê Cao, K. A., & Welham, Z. M. (2021). Multivariate data integration using R:
methods and applications with the mixOmics package. CRC Press.

3. Montoya, A. F. (2021). Memoria inmunológica, stress y emociones. Le corps et
l’analyse. Revue des societés francophones d’analyse bioénergétique.
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Abstract. During the pandemic, the implemented measures led to cre-
ate predictive mathematical models considering the impact of isolation
on infection rates in various regions. The reference [1] focused on the
“Quarantine Model” (QM) which considers a sub-population of latently
infected individuals, protected from infection due to isolation. However,
these models did not account for the spatial spread of the disease. To
address this, a spatiotemporal diffusion model is proposed, extending
the one-dimensional model to a two-dimensional surface and introduc-
ing additional parameters. The analysis performs simulations using real
data and different numerical resolution methods for partial differential
equations (PDEs). Our study emphasises the importance of qualitative
analysis in situations with minimal mobility and compares the results in
areas under stricter measures. The findings shed light on the effectiveness
of various measures in controlling the spread of infections.

Keywords: Quarantine Model, Pandemic diffusion, PDEs, Covid-19

1 Pandemic Evolution Models

1.1 SIR Model

Recent pandemic conditions have triggered the study of different mathematical
models that try to analyse the development of the pandemic under various sce-
narios. First of all, we must establish the theoretical framework on which the
so-called Quarantine Model (QM) is built. The QM represents a modified and
extended version of the SIR model, a fundamental model frequently employed in
epidemiology for assessing the critical progression of diseases within a popula-
tion. Among the various versions of the model, we shall focus on the subsequent
system of Ordinary Differential Equations (ODEs):
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dS

dt
= −kI(t)S(t),

dI

dt
= kI(t)S(t)− βI(t)− σI(t),

dR

dt
= βI(t). (1)

The term kIS describes the disease transmission rate due to contact with
infected individuals, βI characterises the rate of recovery for the infected, and
σI represents the mortality rate due to the infection. The analysis of this model
is well-known and will not be discussed further here. Let us focus solely on
determining the conditions of disease progression in cases where the number
of infected, recovered, and deceased individuals is significantly lower than the
number of susceptible individuals. In this scenario, the susceptible population S
in the model can be approximated by a constant value (S = S0). By considering
this simplification, we can derive an ordinary differential equation with constant
coefficients, making the solution readily obtainable.

1.2 Quarantine Model

In the context of the present study, QM introduces a novel approach aimed
at modifying the existing model, considering the extraordinary measures im-
plemented to address the coronavirus infection. The standard SIR (Susceptible-
Infectious-Recovered) model, while widely employed in epidemiological analyses,
neglects the consideration of the disease’s incubation period, which has been
demonstrated to play a pivotal role in the spread of the coronavirus.

Notably, individuals afflicted with the coronavirus can become infective even
before exhibiting any discernible symptoms. To account for this aspect, we must
incorporate a sub-population of latently infected individuals into the model as we
see in Eq. (2). These individuals have already contracted the infection during the
incubation period but do not exhibit any outward symptoms. At the end of the
incubation period, the disease manifests itself, accompanied by the characteristic
symptoms, and the affected individual is subsequently isolated in quarantine to
prevent further transmission of the infection to others.

dS

dt
= −kI(t)S(t)

dI

dt
= kI(t)S(t)− kI(t− τ)S(t− τ) (2)

The modification that QM proposes entails to consider I as the sub-population
of latently infected individuals, and τ which represents the duration of the in-
cubation period. The second term in the Eq. (2) corresponds to individuals who
were infected at time t − τ , and whose incubation period concludes at time
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τ , leading to their placement in quarantine, effectively curbing their ability to
transmit the infection further.

To simplify the analytical treatment, we proceed by approximating the sus-
ceptible population as a constant (S(t) = S(t − τ) = S0), and accordingly, we
replace it in the equation, resulting in the formulation of the following ODE:

dI

dt
= kI(t)S0 − kI(t− τ)S0.

Limitations of QM. In spite of this improvement, the current model exhibits
several evident limitations. Initially, it solely accounts for the initial phase of
disease development, wherein the number of susceptible individuals can be rea-
sonably approximated as a constant. While this approximation behaves well
under circumstances where the disease propagation is effectively curtailed or
regulated, it may prove inadequate when the number of infected cases remains
relatively small in comparison to the total population.

Moreover, a notable disadvantage of the model lies in its neglect of the spatial
distribution of infected individuals and their subsequent displacement. Address-
ing this concern, we propose several extensions to the model aimed at amelio-
rating the impact of these factors on the outcomes. In a previously referenced
article [1] introducing the quarantine model, an extension encompassing a term
describing one-dimensional spatial diffusion has been put forth. This term char-
acterises diffusion akin to heat propagation as we can see in Eq. (3), albeit
involving certain approximations such as representing the population as a fluid,
in detail,

∂I(x, t)

∂t
= δ

∂2I(x, t)

∂x2
+ kI(x, t)S0 − kI(x, t− τ)S0. (3)

Furthermore, a significant drawback of the current model is the absence of
mortality considerations. As the infected individuals are placed in quarantine
post-incubation, and they become immune to reinfection, the model precludes
the exploration of the dynamics concerning groups susceptible to such outcomes.

To advance the comprehensiveness and accuracy of the model, we must un-
dertake further investigations to encompass these critical aspects and enhance
its applicability in real-world scenarios.

2 A Quarantine Model Extension

As we have already mentioned (see ref. [1]), we are faced with a model that
incorporates an explicit spatial dimension, where the variables I and S0 now
represent corresponding densities instead of sizes. The addition of a diffusion
term characterises the motion of individuals within the system, with an intensity
parameter denoted as δ. The new proposed equation, improving the model, is

∂I(x, y, t)

∂t
= δ

(
∂2I(x, y, t)

∂x2
+
∂2I(x, y, t)

∂y2

)
+kS0(I(x, y, t)−I(x, y, t−τ)). (4)
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Our proposal applies the Laplacian operator to the spatial distribution com-
ponent, thereby extending the model’s scope to a specific region of interest (Eq.
(4)). In this context, we make an isotropic approximation, as the intensity of
movement does not exhibit directional dependence. However, it is important to
highlight that we still consider S0 as an independent constant, unaffected by
both time and space. Nevertheless, as the pandemic progresses and the number
of infected cases increases, this assumption may no longer hold true, necessitating
further refinement of the model to be aware of such circumstances. Then, we can
complete the model by introducing a new unknown field that turns the problem
back into a system of partial differential equations replacing S0 by S(x, y, t). In
summary, we present two significant modifications to the previously proposed
quarantine model, incorporating spatial and temporal diffusion. One approach
assumes constant population density (S0) at all times and locations, while the
other one considers susceptible as part of the unknown factors in the system of
partial differential equations.

The problem at hand can be analogously understood as thermal diffusion
with a time-delay system of differential equations resulting from the incubation
period, wherein infected individuals cannot be reinfected or transmit the disease
to others, leading to stability intervals after the quarantine period. However, the
spatially averaged model may not accurately capture dynamics when certain pa-
rameters vary across space. In situations where disease development exhibits dis-
tinct motion intensities in different locations, eradication may occur in restricted
areas, but new outbreaks may arise in non-adopted or inadequately restricted
regions. Furthermore, human movement can follow more complex patterns than
the Fickian Diffusion assumed, such as a network formed by long-distance con-
nections between major airports. Such considerations emphasise the need for
comprehensive and adaptable models to account for real-world complexities in
disease spread.

2.1 Simulation Approach

Let us now pay attention to the discretisation of the equations to obtain nume-
rical solutions of the problem. For this purpose, we opted for the FTCS (For-
ward Time-Centred Space) method, renowned for its simplicity and efficacy,
well-suited to the problem’s specific values. Henceforth we will employ upper
indices to denote temporal coordinates and lower indices for spatial coordinates.
Therefore we write

In+1
ij = Inij + δ∆t

(
Ini+1,j − 2Inij + Ini−1,j

∆x2
+
Ini,j+1 − 2Inij + Ini,j−1

∆y2

)
+∆tkS0I

n
ij −∆tkS0I

n−τ
ij , (5)
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In+1
ij = Inij + δ∆t

(
Ini+1,j − 2Ini,j + Ini−1,j

∆x2
+
Ini,j+1 − 2Ini,j + Ini,j−1

∆y2

)
+∆tkSn

ijI
n
ij −∆tkSn

ijI
n−τ
ij , (6)

Sn+1
ij = Sn

ij + δ∆t

(
Ini+1,j − 2Ini,j + Ini−1,j

∆x2
+
Ini,j+1 − 2Ini,j + Ini,j−1

∆y2

)
+∆tkSn

ijI
n
ij . (7)

As we pointed out, we segregated the solutions of the model into two ver-
sions and proceeded to implement a Python-based routine to obtain results as
a function of time. Equations (6) and (7) describe the model in which we con-
sider S(x, y, t) as an unknown vector field of the system of differential equations,
while equation (5) refers to the model in which we approximate S as a constant
value S0. The subsequent deliberation shall encompass considerations regarding
simulation-dependent factors, such as temporal and spatial stepping, in further
detail.

Boundary Conditions. The establishment of appropriate boundary conditions
holds paramount significance in ensuring the accurate and reliable development
of the simulation. As well-documented, the Von Neumann conditions are widely
employed for simulating heat diffusion phenomena. Ensuring a null flow at spe-
cific borders, such as the coast of the province of Valencia, becomes vital for the
simulation’s validity. These conditions are defined by the expressions

∂I(t, Cx, y)

∂x
= 0⇒

IkN+1,j − IkN−1,j

2∆x
= 0⇒ IkN+1,j = IkN−1,j and

∂I(t, x, Cy)

∂y
= 0⇒

Iki,N+1 − Iki,N−1

2∆y
= 0⇒ Iki,N+1 = Iki,N−1. (8)

Through the discretization process conducted earlier, we can ascertain that
the flow in both directions is null, which allows us to implement boundary con-
ditions that effectively cancell the flow as wee see in Eqs. (8). This strategic
approach serves to prevent errors and discrepancies that might otherwise arise
during the simulation, reinforcing the overall robustness and fidelity of the model.

Our focus of investigation centres on the province of Valencia, renowned for
its geographical boundaries encompassing a coastal region to the east (Fig. 1).
However, it is crucial to acknowledge that for the northern, southern, and western
borders, we have refrained from implementing such restrictive conditions. This
decision stems from our understanding that despite inter-regional restrictions,
the movement of infected individuals might still extend beyond these bound-
aries, which requires a more comprehensive study in the future to augment the
accuracy and reliability of the results.
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Fig. 1: Establishment of several initial infected zones within prominent cities or
regions situated within the province. While considering the spread of infection
within this province, we have imposed the necessary boundary conditions along
the eastern coast, accounting for the constrained flow of infected individuals due
to the maritime barrier.

It is imperative to acknowledge that our approach entails an approximation of
reality, considering the complexities of real-world scenarios. This method allows
us to explore and analyse the potential transmission dynamics originating from
multiple focal points, contributing to a more comprehensive understanding of
the disease’s spread within the region of interest (Fig. 1). By accounting for
these diverse initial conditions, we aim to capture a more representative and
nuanced depiction of the epidemiological situation within the simulated area. In
this particular simulation, it is crucial to note that each spatial step corresponds
to a discrete pixel, with a population density that can either remain constant
or vary based on the chosen model. This density directly influences the value of
susceptibility attributed to each pixel.

Considering the scale of our simulation, which operates at a 10:3 ratio, we
can deduce that each pixel encompasses an area of 0.09 km2. For the model
where S is assumed constant, we have employed the average population density
of the entire province. By considering an average population density of 31.3
inhabitants/km2 in each pixel, we can gauge the epidemiological dynamics at
this scale. Moreover, we have assumed a mean incubation time of 6 days for our
simulation. These considerations contribute to the accuracy and relevance of our
findings as we investigate the disease spread within the province.
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FCTS Stability. Given the intricate numerical nature of the simulation and
the multitude of constants upon which it relies, undertaking a comprehensive
stability analysis becomes imperative. For this purpose, we employ the well-
established Von Neumann stability analysis, which entails decomposing numeri-
cal errors of the approximations into Fourier series (see [3] and [2]). In a particular
case of a function ψ(x, y, t) we have

ϕ(x, y, t) =
∑
k,l

ck,l(t)e
i(kx+ly),

ck(t+∆t) =

[
1− 4δ∆t

(∆x)2
sin2

(
k∆x

2

)
− 4δ∆t

(∆y)2
sin2

(
k∆y

2

)
+ kS0∆t

]
ck(t).

In our specific problem, we can simplify the method by considering the lag
term as that of the n − 1 iteration and subsequently grouping to obtain an
iteration constant. After our calculations, we derive two crucial conditions that
determine the maximum permissible value of the time step ∆t:

∆t ≤ min

{
3

4δ

(∆x∆y)2

(∆x)2 + (∆y)2
,

1

kS0

}
. (9)

This condition plays a pivotal role in ensuring the stability of the simulation.
By incorporating these parameters into the simulation, we can confidently uphold
the stability and reliability of our numerical model as we explore the intricate
dynamics of the disease spread within a particular area.

2.2 Simulation Results

To acquire the pertinent constants governing the alignment of the infected po-
pulation with public health data, we have adopted one-dimensional optimisation
models concerning the density of infected individuals in cities designated as ini-
tial infection zones. Afterwards, several iterations of the simulation have been
conducted, wherein the relationship between the constants k and δ has been
incrementally fitted.

These iterations enable us to explore the parameter space and gauge the
impact of different k and δ values on the simulation’s outcomes. By iterative
fine-tuning the relationship between these constants, we endeavour to achieve
a more accurate representation of the real-world epidemiological dynamics and
establish a robust and validated numerical model for our study.

In cities with too high population density, the simulation demonstrates a
favourable fit with the data from the initial wave of infections. This success can
be attributed to the accurate approximation of S0 as a constant, which holds true
due to the relatively low number of infected cases during that period (Fig. 2).
However, a phenomenon emerges in cities heavily impacted by the largest wave
of infections, generated by the influence of Valencia. This results in a peak aris-
ing from the simultaneous presence of two incubation periods originating from
distinct sources (Fig. 3). The overlapping effect contributes to the complexity of
the infection dynamics within these cities.
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Fig. 2: Evolution of the density of infected population in Valencia as an initial
area of infection.

Fig. 3: Evolution of the density of infected population in Ontinyent as an initial
area of infection.

In contrast to the observed situation in the city of Ontinyent, we find an
opposing trend in cities located farther from the initially selected infection points.
These distant cities do not strictly align with the data, mainly because of the
absence of nearby sources that could bolster the flow of infections. The lack of
nearby infection sources results in a decreased influx of infected individuals to
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these cities, causing deviations in the pattern of disease progression compared
to the initial infection zones (Fig. 4).

Fig. 4: Evolution of the density of infected population in Requena as an initial
area of infection.

An intriguing observation arises from the model’s adaptation to the variation
in the trend of infected cases attributed to the incubation time. Over the course
of a comprehensive 121 days simulation, we noted that the change in the trend
of infections did not manifest until approximately 45 days from the onset of the
initial wave outbreak, aligning closely with the trends observed in health agency
data.

Remarkably, our simulation pinpointed a distinct trend change occurring
in approximately 42 days for the city of Valencia. This observation highlights
the model’s ability to describe and anticipate changes in infection dynamics
with remarkable accuracy, reinforcing the validity and reliability of our numeri-
cal approach in representing real-world epidemiological patterns. The temporal
alignment between simulation outcomes and actual data underscores the model’s
potential as a valuable tool for predicting and understanding disease spread dy-
namics, thereby facilitating more effective public health actions and mitigation
strategies.
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Fig. 5: Images obtained from the dynamic simulation carried out in the province
of Valencia. In scenario“a” the simulation parameters facilitate a controlled pan-
demic evolution, where the number of infected individuals diminishes after reach-
ing its peak. Conversely, scenario “b” depicts an uncontrolled evolution charac-
terised by an unrestrained diffusion of infections with a high value of δ.
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Lucas Goiriz1,2, Raúl Ruiz1 Òscar Garibo-i-Orts2, J. Alberto Conejero2, and
Guillermo Rodrigo1,†

1 Institute for Integrative Systems Biology (I2SysBio), CSIC – Universitat de
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1 The Molecular Clock Hypothesis

The molecular clock hypothesis, introduced by Emile Zuckerkandl and Linus
Pauling in 1965, had a profound impact on evolutionary biology, becoming a
vital tool for understanding and dating evolutionary events across various life
forms, including archaea, eukarya, bacteria, and even viruses. This hypothesis
proposes that the rate of genetic mutations in DNA sequences remains relatively
steady over time, resembling a continuous “ticking clock”, enabling researchers
to estimate species divergence and evolutionary histories [1]. Motoo Kimura
further developed this theory into a comprehensive framework in 1968, known
as the neutral theory of molecular evolution. According to Kimura’s proposal,
the rate of molecular evolution is determined by the fixation rate of neutral
mutations, which are not influenced by natural selection [2]. This theory also
predicts that molecular clocks behave like Poissonian point processes [3, 4].

The application of the molecular clock hypothesis and its framework has
been extensive in a wide range of biological problems, including estimating diver-
gence times between species, reconstructing evolutionary relationships, calibrat-
ing phylogenetic trees, and tracking disease transmission and epidemics [5–7].

Despite its widespread use, the molecular clock hypothesis has been a subject
of intense debate within the scientific community as the process of evolution
is complex and affected by environmental changes, transmission bottlenecks,
recombination, and speciation events, making it a highly volatile and stochastic
phenomenon. Some studies have even shown that the molecular clock model is
not valid in numerous cases [8], and others argue that it may not be applicable
to all species and populations [9, 10].

Given these discrepancies, several modified molecular clock models have been
proposed to address specific complexities and challenges in evolutionary studies.
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These models include relaxed molecular clocks, Bayesian molecular clocks, birth-
death molecular clocks, and relaxed clocks with covariates [11,12], among others.
These adaptations build upon the foundational ideas of the original molecular
clock hypothesis while accommodating real-world complexities and expanding
the scope of evolutionary research.

To motivate the development of a novel molecular clock model, we will briefly
explore how a Poisson point process can be employed to model DNA sequence
evolution. We will then extend the Poisson point process into a continuous
stochastic process.

1.1 Evolution as a Poisson point process

The Poisson distribution is commonly used to model the occurrence of infrequent
events within a fixed time or space interval. In the context of genetic mutations
during DNA replication, each generation (defined as a replicative cycle) can
introduce changes or substitutions in the DNA sequence due to various factors
like errors induced by the DNA polymerase, radiation, or chemicals. Since the
likelihood of a mutation at a specific position in the DNA sequence is assumed
to be small, constant, and independent between generations (as supported by
experimental evidence), the number of mutations in a lineage over n generations
can be accurately described using the Poisson distribution.

Let u be the rate of mutations per generation, and n the number of genera-
tions. In this scenario, the number of mutations that occur in a lineage during
these n generations follows a Poisson distribution with a mean value of un.
In addition, if each generation takes the same amount of time, the number of
mutations in the lineage during a specific time period t can be described as a
homogeneous Poisson point process, denoted as {N(t), t ≥ 0}, where N(t) repre-
sents the total number of mutations that have taken place up to (and including)
time t. Consequently, the probability of observing exactly n mutations, denoted
as N(t) = n at time t, is given by

Pr(N(t) = n) =
e−κt (κt)

n

n!
(1)

where κ the rate of substitutions for a given unit of time. Importantly, Equa-
tion 1 implies that the number of mutations in a lineage at time t = 0 is 0 and
that the increments of the process are independent.

For further developments, it is convenient to compute the moment generating
function, MN(t)(s), of the Poisson process:
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MN(t)(s) = E
[
etN(t)

]
(2)

=

∞∑
v=0

esn
e−κt (κt)

n

n!

= e−κt
∞∑

n=0

(κtes)
n

n!

= e−κteκte
s

= eκt(e
s−1) (3)

This way it is trivial to demonstrate that the mean and variance of the
process are both given by κt:

E [N(t)] =
∂

∂s
MN(t)(s)

∣∣∣∣
s=0

(4)

=
[
κteκt(e

s−1)+s
]
s=0

= κt (5)

V [N(t)] = E
[
(N(t)− E [N(t)])

2
]

(6)

= E
[
N2(t)− 2N(t)E [N(t)] + E [N(t)]

2
]

= E
[
N2(t)

]
− E [N(t)]

2

=
∂2

∂s2
MN(t)(s)

∣∣∣∣
s=0

− (κt)
2

=
[
κt (κtes + 1) eκt(e

s−1)+s
]
s=0
− (κt)

2

= (κt)
2
+ κt− (κt)

2

= κt (7)

As a corollary, it is trivial to assess that the process’ dispersion index ρN(t),
defined as the ratio between mean and variance, is equal to 1.

1.2 Evolution approximated as a continuous stochastic process

Similar to how the Poisson distribution can be approximated by a Gaussian dis-
tribution through the central limit theorem, a Poisson point process can also be
approximated by a Wiener process. The Wiener process, also known as Brown-
ian motion, is a continuous-time stochastic process characterized by independent
and stationary increments. It is usually represented as {W (t), t ≥ 0}, whereW (t)
is a random variable representing the displacement of a particle at time t, its
increments follow a normal distribution with a mean E[W (t)] = 0 and, if it’s the
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standard Wiener process, a variance V[W (t)] = 1. The Wiener process is widely
used as a model for random fluctuations in various physical systems.

Therefore, the number of mutations during DNA replication can be reformu-
lated as the following Langevin stochastic differential equation

dm(t)

dt
= κ+

√
κξ(t) (8)

where ξ(t) is a Gaussian white noise characterized by E [ξ(t)] = 0 and covari-
ance function Cov [ξ(t)ξ(s)] = δ(t − s). Note that ξ(t) is defined as the formal
derivative of the standard Wiener process W (t), an assertion which has to be
handled with caution because the Wiener process is nowhere differentiable with
probability 1. Equation 8 can be solved analytically:

dm(t)

dt
= κ+

√
κξ(t)

m(t) = m(0) + κt+
√
κ

∫ t

0

ξ(s)ds

= κt+
√
κ

∫ t

0

ξ(s)ds (9)

Note that this reformulation maintains the Poisson process’ mean and vari-
ance:

E [m(t)] = E
[
κt+

√
κ

∫ t

0

ξ(s)ds

]
(10)

= κt+
√
κ

∫ t

0

E [ξ(s)] ds

= κt (11)

V [m(t)] = E
[
(m(t)− E [m(t)])

2
]

(12)

= E

[(
κt+

√
κ

∫ t

0

ξ(s)ds− κt
)2
]

= κ

∫ t

0

∫ t

0

E [ξ(s)ξ(u)] dsdu

= κ

∫ t

0

∫ t

0

δ(s− u)dsdu

= κ

∫ t

0

1du

= κt (13)

As a corollary, the corresponding dispersion index ρm(t) remains equal to
1 as expected, since the Wiener process is a continuous-time approximation of
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the Poisson process. One concern that arises from this reformulation is that the
number of mutations m(t) is no longer an integer. However, this issue can be
easily solved by applying a rounding function to m(t) whenever it is necessary
to obtain an integer value.

2 Anomalous Diffusion

In the preceding section we demonstrated that, according to the molecular clock
hypothesis, the number of mutations occurring in a lineage during a specific time
period t can be described as a Brownian motion exhibiting a mean and variance
equal to κt, where κ represents the rate of substitutions for a given unit of time,
akin to a microscopic particle moving in a fluid as a consequence of thermal
forces.

However, it is well known that the diffusion of microscopic particles in a
fluid does not always conform to Brownian motion. In fact, the diffusion of
particles in a fluid can be classified into three main categories depending on
their mean squared displacement (MSD; also understood as the variance of the
stochastic process governing the motion): normal diffusion, subdiffusion, and
superdiffusion. Under normal diffusion, the MSD of the particle is proportional
to t, while under subdiffusion and superdiffusion the MSD of the particle is
proportional to tα, where α is known as the diffusion exponent, with α < 1 for
the former case and α > 1 for the latter [13].

Similarly to a microscopic particle moving in a fluid, the number of muta-
tions in a lineage during a specific time period t may not conform to a Brownian
motion, as described by several studies observing overdispersed and underdis-
persed populations. Therefore, it is reasonable to consider that the number of
mutations in a lineage during a specific time period t may exhibit anomalous
diffusion.

2.1 Evolution as a fractional Brownian motion

Multiple stochastic definitions of anomalous diffusion exist, and it is usually
left to the researcher to use the one that best fits their problem. In this work,
fractional Brownian motion (fBm) is used as a model for anomalous diffusion
due to its simple yet powerful mathematical properties.

fBm is a continuous-time stochastic process, represented as {Wα(t), t ≥ 0},
where Wα(t) is a random variable representing the displacement of a particle at
time t, characterized by stationary increments, mean E [Wα(t)] = 0 and a covari-
ance function of the form Cov [Wα(t)Wα(s)] =

1
2 (t

α + sα − |t− s|α), where α
is the diffusion exponent, which determines the degree of long-term dependence
of the process. Indeed, the fBm is a generalization of the Wiener process, which
corresponds to the case α = 1.

To reformulate the number of mutations in a lineage during a specific time
period t as a fBm, we will modify the Langevin stochastic differential equation
shown in Equation 8:
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dm(t)

dt
= κ+

√
κη(t) (14)

where η(t) is an appropriate noise source characterized by E [η(t)] = 0 and

a covariance function such that Cov [Wα(t)Wα(s)] =
∫ t

0

∫ s

0
Cov [η(u)η(v)] dudv.

It is trivial to compute that Cov [η(t)η(s)] = α
2 (α− 1) |t− s|α−2

. This definition
allows for the computation of the appropriate mean and variance of the process:

E [m(t)] = E
[
κt+

√
κ

∫ t

0

η(s)ds

]
(15)

= κt (16)

V [m(t)] = E
[
(m(t)− E [m(t)])

2
]

(17)

= κE

[(∫ t

0

η(s)ds

)2
]

= κ

∫ t

0
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0

E [η(s)η(u)] dsdu
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ακ

2
(α− 1)

∫ t

0
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0

|s− u|α−2
dsdu
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ακ

2
(α− 1)

∫ t

0

[∫ u

0

(u− s)α−2
ds+
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u

(s− u)α−2
ds

]
du

=
ακ

2

∫ t

0

[
sα−1 + (t− s)α−1

]
du

= κtα (18)

Therefore, by using fBm as a model for anomalous diffusion, the number
of mutations in a lineage during a specific time period t can be described as
a stochastic process with a mean and variance equal to κt (in line with the
molecular clock hypothesis) and κtα, respectively. These values provide valuable
insights into the reasons behind overdispersed and underdispersed genetic popu-
lations and the extent of their long-term dependence. It is essential to note that
when α = 1, the fBm simplifies to the Wiener process, resulting in the number
of mutations in a lineage during a specific time period t being described as a
Brownian motion.

3 Data-driven model validation

Viruses have frequently served as a valuable model system for investigating evo-
lution because of their high mutability and rapid evolutionary changes [14]. In
this study, SARS-CoV-2 viral DNA sequences were employed to validate the
proposed model due to the comprehensive coverage of the virus’s evolution and
the availability of high-quality data.
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For each sequence in the dataset (all available viral sequences collected in
the United Kingdom up to May 2022), the number of mutations was computed
by comparing it to the reference SARS-CoV-2 genome sequence (NC 045512.2).
Next, the number of mutations were binned in a weekly manner, and the mean
and variance of the number of mutations were computed for each week and
variant of concern (VoC) annotated. In particular, to perform computations for
variants, only sequences annotated as variant v were considered. Certainly, the
number of sequences in week k, dubbed Nk, obeys Nk =

∑
v∈V Nv,k + N∅k,

where V is the set of variants and N∅k denotes the number of sequences that are
not linked to any variant of V in the kth week.

Thus, if there are Nv,k sequences in the kth week that are linked to variant
v, the mean and variance of the number of mutations are given by

E [mv,k] =
1

Nv,k

Nv,k∑
i=1

mv,k,i (19)

V [mv,k] =
1

Nv,k

Nv,k−1∑
i=1

(mv,k,i − E [mv,k])
2

(20)

The variances were then fitted following the expression

log
[(
V [mv,k]− σ2

0

)
/κ
]
= α log k (21)

Resulting in subdiffusion in the Primal, Alpha and Omicron BA.1 variants,
while weak superdiffusion in the case of the Delta variant (Pearson’s correlations
in log scale, P < 10−4 for Primal, Alpha, and Delta and P = 0.020 for Omicron
BA.1), which resulted in a significant improvement with respect to the null
model (Brownian motion). A more elaborated discussion regarding the biological
significance of these results, including the implications of the diffusion exponent
α and graphical representation of the fitted parameters, can be found in [15].

4 Closing remarks

Anomalous diffusion is gaining traction as a model for describing a great variety
of naturally ocurring processes, starting with the diffusion of microscopic par-
ticles in a fluid. Models based on anomalous diffusion patterns may be suited
to describe the evolution of living entities, including viruses, as they can ac-
count for the long-term dependence of the process, which is not possible with
the Brownian motion model.

In this work, we have proposed a novel molecular clock model based on
anomalous diffusion, which can be used to describe the number of mutations in
a lineage during a specific time period t as a stochastic process with a mean
and variance equal to κt and κtα, respectively, where κ represents the rate of
substitutions for a given unit of time and α is the diffusion exponent, which
determines the degree of long-term dependence of the process. This model has
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been validated using SARS-CoV-2 viral DNA sequences, resulting in a significant
improvement with respect to the null model (Brownian motion).
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Abstract. In this work we investigate the topic of COVID-19 vaccine
allocation. We present some previous studies that have considered the
problem of allocating vaccines and in particular for COVID-19. We de-
velop a mathematical model that is useful to investigate how the distri-
bution of vaccines affects the dynamics and outcomes of the COVID-19
pandemic. The model is based on a non-autonomous system of nonlinear
differential equations. The model considers age, gender, willingness to
vaccinate and comorbidity status. The developed model is complex since
it considers a total of 164 ordinary differential equations, which allow
us to explore a variety of vaccination programs for the COVID-19 pan-
demic. We test these programs for the early COVID-19 pandemic when
vaccine availability was limited and the number of deaths per week were
very large. The evaluation of the different programs is done using the
particular scenario of the USA. However, the constructed mathematical
model can be applied to other countries or even regions. The findings of
this work highlight the significance of developing an effective vaccination
program in order to save human lives.

Keywords: Mathematical modeling; COVID-19; vaccination program;
age structure; comorbidity; gender.

1 Introduction

During the COVID-19 pandemic there have been more than 6,900,000 deaths
worldwide as of July 2023 [41]. This despite that a total of 13,490,832,730 vaccine
doses have been administered worldwide (as of 23 July 2023) [41]. However, some
low income countries have more than 70% of their populations unvaccinated [41].
For instance, Haiti has only administered a total of 5.83 dose per 100 population
and Burundi an impressive 0.34 dose per 100 population [41]. The COVID-19
pandemic brought to light persistent obstacles to adult vaccination, such as lack
of availability, lack of accessibility, and lack of trust. It has been recognized that
vaccination reduces the burden of the COVID-19 pandemic and as a consequence
has been an important factor for the public health worldwide [5].

In December 2020, two COVID-19 vaccines were authorized for emergency
use in the United States [42]. Due to a limited vaccine supply the Advisory Com-
mittee on Immunization Practices (ACIP) gave priority vaccination to health
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care workers and residents and staff members of long-term care facilities during
the first phase of the U.S. COVID-19 vaccination program [42]. Ideally, every-
one would be vaccinated immediately, since vaccination has been proven to be
effective in reducing deaths and cases [9, 35, 49, 51]. However, the reality was
that in December 2020 and over the first semester of 2021 there was a very
limited supply of Covid vaccines in many countries around the world against
the SARS-CoV-2 virus and as a consequence it was necessary to prioritize some
subpopulations [22,32,34]. Studies that investigate the development of good vac-
cination programs is of paramount importance for the people and therefore for
public health policymakers.

Allocating vaccines to subgroups under limited availability is a difficult task
due to the complexity of the topic and also due to the societal pressure to vac-
cinate people to save lives. From a scientific viewpoint this distribution problem
can be investigated using many different methods and mathematical tools. There
are previous studies that have investigated the problem of finding the best proto-
cols to allocate vaccines to the population [24,32,40,47]. There are many factors
that can be taken into account in order to assign the vaccines. For instance, a
vaccination program may aim to avert the maximum number of deaths, reduce
the years of life lost (YLL), the number of cases, or even maintain essential so-
cial services [5, 40, 47]. All these aims are plausible and depending on different
viewpoints policymakers can choose one over another. In summary, the selection
of the main objective of a vaccination program is a very complex decision.

A variety of modeling studies to investigate vaccination programs have been
developed [32,33,40]. Due to the intricacy of the COVID-19 pandemic situation
and human behavior, each model or study has some limitations [1,10]. It is inter-
esting to note that some works have determined that children should be given
vaccine priority because of their crucial role in the spread of influenza [5, 52].
Obviously, this strategy was not possible in the case of the COVID-19 pandemic
since the vaccinations were not approved for use in children at the time when
vaccines became available. There are a variety of approaches to mathematical
modeling studies, which prove helpful in many ways [13,24,38,54]. For instance,
numerous simulations can be run, allowing the exploration of various aspects
under numerous conditions where uncertainty is a significant component. Some
studies have employed SIR or SEIR models without the age-group structure
that is essential for finding the most effective vaccination program [28,32,40,46].
More sophisticated mathematical models where age-structure is taken into ac-
count have been constructed [9, 17, 22, 24, 54]. In [38] the authors found that to
minimize deaths or quality adjusted life year losses in the UK, the best vacci-
nation program is to prioritize older age groups first. In [23] the authors also
found that for some countries the best vaccination program should not prioritize
prioritize the oldest groups if the aim is to minimize expected number of life
years saved. In [9] the authors used an age-structured SEIR type model to study
the best vaccination strategies. Three age-groups were considered; 20–40 years,
40–60 years and 60+ years. They used contact matrices and different environ-
ments such as home, school and work. They assumed a fixed number of vaccine
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doses available per day and found that the benefit of prioritizing vaccine alloca-
tion among older adults is higher when pace of vaccination is slow. Additional
research on vaccination regimens that considered various doses has been carried
out [15, 25, 37]. In summary, the significance of COVID-19 vaccine allocation
programs under various priority schemes is highlighted by all of these previous
results and others [32,40].

In this work we construct a more detailed and complex mathematical model
to investigate vaccine prioritization programs. The proposed model takes into
account age, comorbidities, gender and vaccination hesitancy. We decided to con-
sider the gender of people since men are at greater risk of more severe COVID-19
outcomes than women, with biological, socio-cultural and behavioral differences
playing fundamental roles [3, 4, 11, 27]. We also chose to include comorbidities
because it impacts CFR and social contacts. Taking data from December 2020
to June 2021, we evaluate the specific vaccination availability in the USA. This
feature sets the current study apart from many others where the proportion
of the population receiving vaccinations is often constant [28, 32, 40, 46]. In our
work finding the best vaccination programs is challenging and computationally
demanding since the mathematical model has a detailed structure and therefore
a large number of equations. Furthermore, the number of potential vaccination
programs is very large. In this work we consider the minimization of deaths as
the main objective. Based on the previous discussion it can be seen that due to
the vast number of variables, high dimensionality, and nonlinearities, related to
the vaccine allocation problem this type of research becomes extremely complex.

2 Materials and methods

In this work, we present a mathematical framework to investigate which are
the best vaccination programs to reduce the number of deaths during COVID-
19 pandemic. First, we design and construct a mathematical model based on
a nonautonomous system of nonlinear ordinary differential equations. The non-
homogeneous term is related to a time-varying vaccination rate. In this model
each state variable represents a different group with regard to COVID disease,
vaccination, and comorbidity status. Furthermore, these groups also take into
account five different age groups and gender. The model includes symptomatic
and asymptomatic individuals. The designed model also includes groups of peo-
ple who are hesitant to be vaccinated.

The population is split up into subpopulations that are mutually exclusive in
the model. Based on disease status, age group, comorbidity status, gender and
vaccination status, these subpopulations have been created. Regarding Covid
disease status, the following subpopulations are taken into account: suscepti-
ble, infected (capable of infecting others), asymptomatic (capable of infecting
others), and recovered (not infectious). We only take into account the two co-
morbidity statuses of zero comorbidities and one or more comorbidities. We take
into account five age ranges: 0–39 years old, 40–59 years old, 60–69 years old,
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70–79 years old, and 80 years and above. We selected these categories based on
the case fatality rate (CFR).

We attempt to keep the mathematical model reasonably simple in order to
have a tractable optimization problem. The model considers only two statuses
associated to vaccine hesitancy: willing to be vaccinated and vaccine hesitant.
People are able to move between subpopulations. During the brief simulation
period, the model presupposes that recovered individuals have enduring protec-
tion against reinfection [34]. Given the low percentage of breakthrough cases
occurring before one semester, this is a plausible assumption. The model as-
sumes that, during the research time span, only susceptible individuals can be
inoculated with the vaccine. For those who have received vaccinations, the model
assumes that they can become infected. However, their the likelihood of infection
is reduced due to the vaccine. This has often been the case in prior investiga-
tions [16,24,37,43].

2.1 Mathematical model considering vaccination

As previously indicated, the epidemiological model incorporates a time-varying
vaccination term that enables modeling the specific availability of vaccines per
unit time in order to have a closer simulation to reality. Most of previous math-
ematical models are overly simplified compartmental models. The mathematical
model constructed in this work considers the social contacts between people from
different groups. This is achieved by using different transmission rates for each
interaction between individuals from one group with another.

The mathematical framework proposed here employs the subsequent nonau-
tonomous system This allows the model to be written as

Ṡhijk(t) = −λ(t)Shijk(t),

Ṡwijk(t) = −λ(t)Swijk − v(t),

Ṡvijk(t) = −(1− ϵ)λ(t)Svijk(t) + v(t),

İijk(t) = (1− a)λ(t) (Shijk(t) + Swijk(t))− γ Iijk(t),

İvijk(t) = (1− ϵ) (1− a)λ(t)Svijk(t)− γ Ivijk(t),

Ȧhijk(t) = aλ(t)Shijk(t)− γ Ahijk(t), (1)

Ȧwijk(t) = aλ(t)Swijk(t)− γAwijk(t),

Ȧvijk(t) = (1− ϵ) aλ(t)Svijk(t)− γ Ivijk(t),

Ṙ(t) = γ [Ahijk(t) +Awijk(t) +Avijk(t) + (1− δijk) Iijk(t) + (1− δijk) Ivijk(t)],

Ḋ(t) = γ δijk [Iijk(t) + Ivijk(t)].

where i, j, k represent the index of the age, sex and comorbidities groups. The
variable D denotes the cumulative number of deaths. The force of infection λ(t)
represents the pace by which a susceptible person contracts the SARS-CoV-2
virus by contact with an infected or asymptomatic carrier. The variable, Shijk(t),
is the susceptible subpopulation hesitant to vaccinate from age group i, sex j
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and comorbidity status k. The variable, Swijk(t), represents the susceptible sub-
population willing to vaccinate from age group i, sex j and comorbidity status
k. The variable, Svijk(t), represents the susceptible vaccinated subpopulation
from age group i, sex j and comorbidity status k. Analogously, the mathemat-
ical model has the variables Ahijk(t), Awijk(t) and Avijk(t) that represent the
asymptomatic individuals who are unwilling to be vaccinated, willing (to be
vaccinated), and vaccinated respectively. The variables Iijk(t) and Ivijk(t), de-
scribe the non-vaccinated infected subpopulations (willing and unwilling) and
vaccinated, respectively. The variable R(t) is the recovered people.

2.2 Vaccination rate ν(t), transmission rates and social contacts

The model includes a parameter ϵ that describes the vaccine efficacy. For this
work we use a specific time varying vaccination doses v(t) taking this form data
of the USA (December 2020 to June 2021). The inoculation of vaccines is only
done on the individuals willing to be vaccinated.

As is typical in mathematical models used to study epidemiology, the force
of infection is the the main drift of the model’s dynamics. The force of infection

is λ(t) =
1

N

∑5
i=1

∑2
j=1

∑1
k=0 βijk(Ahijk + Iijk + Awijk + Ivijk + Avijk). It

is important to note that the transmission rate, βijk, is included in the force
of infection and has been considered to vary depending on the subpopulation.
While it is true that each person has a unique chance of contracting an infection,
adding this information in a model based on differential equations would make it
too complex to use. However, agent-based models have been used to approximate
individual behaviors during epidemics [19,21,45].

In this research, the people within a group have an average behavior. This is
a more traditional mathematical method due to the use of ordinary differential
equations. Therefore, each group has its own transmission rate βijk. This rate
depends mainly on the social contact rate and the infectivity of the circulating
SARS-CoV-2 variants [17, 24, 32, 40]. To estimate the averaged contacts of each
subpopulation in this work, we also use a social contact matrix [26, 44]. For
the transmission rate, we assumed a variety of values that have been used in
other studies [6, 8, 36]. Younger adults, for instance, are less likely to stay at
home or take precautions [47]. Thus, the transmission rate of younger groups is
higher. For the model we assume that vaccine hesitant individuals are less likely
to adhere to behavioral norms to prevent COVID infection. Therefore, it was
anticipated that those who are vaccine hesitant have a transmission rate that is
1.5 times higher than that of those willing to be vaccinated [30]. Additionally,
we predicted that individuals with one or more comorbidities would be more
inclined to adhere to behavioral norms, which would lower their transmission
rate [14].
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2.3 Case fatality rates (CFRs) and initial conditions for the
subpopulations

In numerous research pertaining to the dynamics of the COVID-19 pandemic,
various death rates based on age, comorbidities, and vaccination status have been
used (and estimated) extensively [12,24,31,48]. We compute the base case fatality
ratio, δbase, for each demographic group [6,33]. We used the fact that people with
one or more comorbidities have a CFR increased by 1.97 times [20,50]. Although
not all of the initial conditions for each of the subpopulations are available, we
assessed initial conditions based on published data for the USA situation from
December 2020 to June 2021. We made assumptions about proportions for the
initial subpopulations that were unclear based on actual demographic data and
information from scientific journals [6]. We also used CDC data to determine
the number of people in each demographic group who had contracted COVID-
19 prior to December 12, 2020, putting them in the recovered compartment

3 Preliminary Results

In this work we designed a more realistic and complex mathematical model that
includes a structure that takes into account age, comorbidity, gender and willing-
ness to be vaccinated. This large structure allows us to consider many different
vaccination programs. As a matter of fact a total of 20 factorial potential pos-
sibilities just without taking into account the possibility of vaccinating people
from different groups at the same time. Therefore, from a computational view-
point the problem of finding the best vaccination programs with regard to deaths
is very demanding. In this work we implement a randomized algorithm in order
to find the best vaccination program with regard to the number of deaths. This
decision is due to the computational intractability of the 20 factorial potential
vaccination programs that can be implemented. In [33] there were 10 factorial
feasible vaccination programs and randomized algorithms were not necessary.
Randomized algorithms have been applied in many different fields to solve a
variety of problems [2, 39]. Thus, we can address the computational challenges
of finding the best vaccination programs.

We perform numerical simulations varying the vaccination programs. We use
the number of deaths as the metric to evaluate the performance of the ordered
priority vaccination programs. The numerical simulations are performed using
the mathematical model (1) and varying the order of the priority groups to be
vaccinated. The model (1) is fitted to actual data of the number of deaths in
order to estimate the base transmission rate. The population structure of the
constructed model differs from the one the CDC used to determine the USA
vaccination program [24,33].

Additionally, the CDC employed vaccination by stages, in which multiple
subpopulations received vaccinations concurrently. Since the CDC vaccination
program was the one that was really employed, we selected the vaccination strat-
egy that was more similar to the vaccination roll out that was implemented in
the USA in order to fit the model (1) [7]. With this method, we simply estimated
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the base transmission rate because predicting additional parameters based on
the data at hand would not guarantee the solution’s uniqueness [18,29,53].

Fig. 1 displays the total number of fatalities for some random vaccination
campaigns using the base transmission rate. As expected, the vaccination pro-
grams have a variety of results. From the perspective of public health, this factor
is essential since it means that by selecting an ideal vaccination allocation, many
lives can be saved. For a fair comparison, all results employ the same beginning
subpopulations and base transmission rate. As it can be seen it is quite chal-
lenging to identify the best vaccination programs because there were so many
different ones tested. However, at a first glance it can be observed that the po-
tential best vaccination programs seem to require to start vaccinating the group
one first or group eleven first. The group 1 corresponds to women with zero
comorbidities and age group 0-39 years old. The group 11 corresponds to men
without comorbidities and age group 0-39 years old. These groups are prioritized
due to their high transmission rates, despite the fact they have lower CFRs than
the other groups. For this particular base transmission rate this result agrees
with the results presented in [5].

Further research and computations are required to reach a more conclusive
and specific conclusion with regard to the best vaccination programs. Nonethe-
less, these preliminary results provide additional insight into finding the best
ordered priority vaccination programs.

Fig. 1: Total number of fatalities for random ordered priority vaccination regi-
mens using the base transmission rate.
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4 Conclusions

In this work we explored a large variety of ordered-priority vaccination programs
for COVID-19 vaccine allocation. We presented a background of previous studies
related to the allocation of vaccines and in particular for COVID-19 pandemics.
We developed a mathematical model in order to investigate how the allocation of
vaccines impacts the number of deaths of the COVID-19 pandemic and different
outcomes related to this pandemic. The model is based on non-autonomous
systems of nonlinear differential equations and considers age, gender, willingness
to vaccinate and comorbidity status. We tested a large number of vaccination
programs for the early COVID-19 pandemic. We used the particular scenario of
the USA. However, the model can be used for other regions. The results of this
work provide information about the complexity of designing an optimal vaccine
strategy and show the significance of developing effective vaccination programs
in order to save human lives, and to be better prepared for future pandemics.
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Abstract. In this paper, we apply the vaccination control strategy to
the fractional-order discrete-time SIC epidemic model given in [1]. We
use two different scenarios. The first one takes into account the initial
variables and involves new parameters related to vaccination and its ef-
fectiveness in preventing contagion. In the second scenario, we add a new
variable to the model representing the vaccinated individuals. For both
cases, the basic reproductive number is obtained to study the behaviour
of the disease. However, the main aim of the paper is to analyse the
effect of the different parameters on the evolution of the disease when
we use vaccination as a control strategy to relieve a certain indirectly
transmitted disease. A quantitative relationship would allow us to relate
this strategy with the reduction of the burden of the disease. The sensi-
tivity indexes [2] will help to study this effect and will be useful to relate
the efficiency with the cost-effectiveness of the vaccination action when
reducing the impact of the disease. The obtained results are applied to
an epidemiological process developed in a pig farm.

Keywords: fractional order, epidemic model, vaccination, sensitivity
analysis

1 Models with vaccination

Let us consider an infectious disease transmitted through the environment, that
is, by contact of the population with the contaminant produced by the infected
individuals. Population has a constant size and is divided into susceptible in-
dividuals with survival rate 0 < p < 1 and infected individuals with survival
rate 0 < q < 1. In addition, we consider 0 < s < 1 the survival rate of the
contaminant, 0 < σ < p the infection rate of susceptible individuals and β > 0
the amount of contaminant.

Using a fractional order derivative discrete-time approach with k memory
steps being 0 < α < 1 the fractional order, in [1], a Susceptible-Infected-Conta-
minant (SIC) discrete-time mathematical model was provided. There, the trun-
cated discrete-time fractional order (DTFO) operator [3] was used and some
properties of the model were studied.
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Now, we are going to consider that the disease is not eradicated and we plan a
control vaccination action, which consists of vaccinating some of the susceptible
individuals. We denote by 0 ≤ v ≤ p the vaccinated population rate.

On one hand, we consider that the vaccine can produce full immunity or null
immunity. In this case we denote by ξ the percentage of immunized susceptible
individuals with the vaccine. Following the steps in [1], we propose the following
discrete-time nonlinear model

x(t+ 1) = Aex(t)−
k∑

j=0

aαj x(t+ 1− j) + (−ae + be)e1 + e2, (1)

with

Ae =


q 0 0

0 q 0

0 β s

 , ae = σ(1− vξ)x1(t)x3(t), be = (1− q +Σα
k )P, (2)

and x(t) = (xj(t))
T
j=1,2,3 with x1(t) representing the susceptible individuals,

x2(t) the infected individuals and x3(t) the contaminant, and (ej)j=1,...,n are the

canonical basis for the space Rn, in this case n = 3. Futhermore, Σα
k =

k∑
j=0

aαj

being

aαj =


1 j = 0

(−1)j α(α− 1)...(α− j + 1)

j!
j > 0

. (3)

On the other hand, if the vaccine does not immunize the individuals but re-
duces the infection rate, we construct a new model introducing a new variable
related to the vaccinated individuals and a new parameter 0 < η < σ repre-
senting the infection rate in the vaccinated individuals. The proposed model has
a four dimensions state variable x(t) = (xj(t))

T
j=1,2,3,4 with x1(t) representing

the susceptible individuals, x2(t) the vaccinated individuals, x3(t) the infected
individuals and x4(t) the contaminant, and the canonical basis is for R4. In this
case, the model is given by

x(t+ 1) = Aix(t)−
k∑

j=0

aαj x(t+ 1− j) + (−ai + be)− bie2 + (ai + bi)e3, (4)

where

Ai =


q − v q − p 0 0

v p 0 0

0 0 q 0

0 0 β s

 , ai = σx1(t)x4(t), bi = ηx2(t)x4(t). (5)
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2 Analysis of the vaccination rate

In this section, we are going to consider an initial model without vaccination
in which the disease remains. This occurs when the basic reproduction number
R0 is greater than 1. When non vaccination is considered, in [1], the authors
obtained an explicit expression of R0 given by

R0 =
βσP

(1− q +Σα
k )(1− s+Σα

k )
.

When the vaccine is taken into account in the process, the basic reproduction
number is affected by the parameters involved in the vaccination control action.
Now, in the first model, (1)-(2), we obtain that its basic reproduction number is

Re =

√
βσ(1− vξ)P

(1− q +Σα
k )(1− s+Σα

k )
.

This expression allow us get a lower bound on the vaccination rate v, which is
given in the next Proposition.

Proposition 1. If R0 > 1 and ξ > 1− 1

R2
0

, then the disease tends to disappear

in the model with vaccine (1)-(2) if and only if the vaccination rate satisfies

v >
1

ξ

(
1− 1

R2
0

)
In the second model, (4)-(5), linearizing around of the disease-free equilibrium

point, which is given by x∗ =
P

1− p+Σα
k + v

(1− p+Σα
k , v, 0, 0), the basic

reproduction number results

Ri =

√
β(σx∗1 + ηx∗2)

(1− q +Σα
k )(1− s+Σα

k )
.

In this case, the lower bound on the vaccination rate v is given in the next
Proposition.

Proposition 2. If R0 > 1 and η <
σ

R2
0

, then the disease tends to disappear in

the model with vaccine (4)-(5) if and only if the vaccination rate satisfies

v > (1− p+Σα
k )

R2
0 − 1

1− η
σR

2
0

.
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3 Sensitivity analysis applied to a pig farm

Sensitivity analysis aids in identifying the key parameters of the model. We are
particularly interested in estimating how the corresponding parameter should be
changed using this approach in order to reduce the basic reproduction number
by a specified percentage. A reduction in the basic reproduction number value
corresponds to a decrease in the number of individuals with the infection. If
the basic reproduction number is less than 1, a decrease in its value correlates
to a faster approach to equilibrium, which means that the disease will vanish
more quickly. Additionally, a lower basic reproduction number indicates that the
disease does not spread as virulently when it is bigger than one.

We make the assumption in our study that the models represent a pig farm
where an infectious epidemic is indirectly spread by ingestion of the contaminant.
We used some of the data from [4] and [5], which match to the specific case of a
Salmonella infection, to evaluate the parameters of our models. Thus, p = 0.9995,
q = 0.99, s = 0.98, σ = 0.24× 10−9 Bacteria−1, β = 2.25× 104 Bacteria.Indiv−1

colony-forming unit (c.f.u.).
We compute the sensitivity indices of the basic reproduction number of both

models. Concretely, we consider a population size P = 100 and a fractional order
α = 0.99 with k = 10 memory steps.

We perform some numerical sensitivity analyzes of the basic reproduction
number for both models with respect to parameters v, ξ in the first model,
and concerning parameters v, η, in the second model. It is known, [2], that the
normalized sensitivity index for a quantity Q with respect to a parameter h is

defined by Φ(Q/h) =
h

Q

∂Q

∂h
. Then, for the model (1)-(2), we obtain

Φ(Re/ξ) = −
(1− ξ)v
2(1− ξv)

, Φ(Re/v) = −
vξ

2(1− ξv)
.

We observe that taking v = 0.564 and ξ = 0.6, the disease remains since
the corresponding Re = 1.241 is greater than 1. Applying the above sensitivity
indices we can reduce this basic reproduction number by about 10% increasing
the vaccination rate to v = 0.784 or the percentage of effectivity to ξ = 0.835.

Analogously, we make a sensitivity analysis of the basic reproduction number
of the model (4)-(5). In this case, the sensitivity indices are

Φ(Ri/η) =
ηΛ

2
, Φ(Ri/v) =

(1− p+Σα
k )(η − σ)Λ

2(1− p+Σα
k + v)

, Λ =
v

vη + σ(1− p+Σα
k )
.

We see how appropriate variation of the values of parameters η and v implies
the reduction of the value of the basic reproduction number.

If v = 0.01 and η = 9 × 10−11 the basic reproduction number is Ri =
1.032. We can reduce by 10% this value by increasing the vaccination rate to
v = 0.023 or by decreasing the infection rate of the vaccinated individuals to
η = 6.466× 10−11.

Figures 1 and 2 show the evolution of the infected population when one of
these parameters is changed according to the new proposed values.
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v= 0.564, ξ= 0.6
v= 0.784, ξ= 0.6
v= 0.564, ξ= 0.835

0 50 100 150 200 250 Time
0

5

10

15

Infected Population

Fig. 1: Comparison of the evolution of infected population for model (1)-(2) with 10
memory steps and α = 0.99 when varying the parameters v and ξ according to the
sensitivity indices.

v= 0.01, h= 9×10-11

v= 0.023, h= 9×10-11

v= 0.01, h= 6.466×10-11
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Fig. 2: Comparison of the evolution of infected population for model (4)-(5) with 10
memory steps and α = 0.99 when varying the parameters v and η according to the
sensitivity indices.
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Tarazona2
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Abstract. The objective of this research is to measure health efficiency
among 23 public institutions selected with complexity level 3, that is, IPS
that has the greatest infrastructure and highly qualified professionals.
The Data Envelopment Analysis (DEA) methodology is used to measure
the effi-ciency between the IPS of different cities in Colombia that serve
the population, mostly with the lowest economic resources in the country.
There are barriers to access health services. Although in theory the en-
tire population has a right to services, the requirements to have external
consultations, emergencies, surgical interventions and health care ser-
vices are quite high, due to a high volume of administrative proce-dures
[1], a situation that makes it difficult for users to use the health service.
The results show that none of the IPS is efficient during the 5 years of
the study, there are efficiencies in several years and in IPS of several
cities in the country.

Keywords: Efficiency, data envelopment analysis – public clinics and
hospitals.

1 Introduction

The study carried out focuses its attention on the processes of health care ser-
vices in the Colombian Health System, specifically related to the installed ca-
pacity (Number of beds), number of external outpatient consultation, number
of hospital emergencies, number of hospital discharges and rate of readmission
of patients in less than 15 days, services that are provide in clinics and hospi-
tals, probably some variables can negatively influence efficiency, use of resources
and institutional results. These variables are included in the research, building
a data panel that is analyzed through the DEA method, in this way clinics and
hospitals that are efficient and inefficient can be identified.

The selection of clinics and hospitals (IPS) is established by determining in-
stitutions with similar characteristics with level of complexity number 3, that
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is, 23 clinics and hospitals that have high technology, specialized profession-
als, medical processes of highly specialized surgeries, large infrastructures. and
significant volumes of patient care. The results allow us to identify the health ser-
vice providers (IPS), public clinics and hospitals that are closest to the efficient
frontier, as well as the IPS that are furthest away from the efficient frontier.

2 Methods

The objective of the study is analyse the efficiency of public clinics and hospitals
in Colombia between 2017 and 2021 and determine the influential variables.

The methodology used was data envelopment analysis with input orientation,
using the basic radial model with variable returns to scale. Data Envelopment
Analysis [2] introduces the linear programming model, the objective is to con-
struct a panel of data to identify efficient and inefficient units (Darairo and
Simar, 2007), according to Cordero, J.M.; Garćıa, A.G.; Cortes, E.L.; Polo, C
(2021) [3] based on the following formula:

Ψ̂ =

{
(x, y) ∈ Rp+q

+ |y ≤
n∑

i=1

γi · yi; x ≥
n∑

i=1

γi · xi for (γ1, . . . , γn)

s.t.

n∑
i=1

γi = 1; γi ≥ 0, i = 1, . . . , n

}
. (1)

Banker R. D.; Charnes, A.; Cooper, W.W. (1984) [4] assumes variable returns
to scale. The identification of efficient units is determined according to Cordero,
J.M.; Garćıa, A.G.; Cortes, E.L.; Polo, C (2021) with units that are equal to 1
as efficient and those that are less than 1 as inefficient:

θ̂DEA (x, y) = inf
{
θ| (θx, y) ∈ Ψ̂

}
(2)

The Ministry of Health and Social Protection formally delivers the infor-
mation, via formal right of request, with the detail of the inputs and outputs
required for the period 2017 to 2021. Input and output variables were estab-
lished in the research, the input variables being the number of hospital beds
(non-discretionary variable) and the cost of the general social security system,
the output variables are as follows number of external consultations, hospital
emergencies, hospital discharges and rate of readmission in less than 15 days
(unwanted variable) [5]. The data panel included the production and resource
values of the IPS throughout the period under study.

The selection is made by taking into account the level of complexity of each
IPS, where level 1 is basic health care services up to the highest level (Level
3). The selected IPS are of complexity level 3, characterized by having more
technology, specialized and subspecialized personnel (Rev. Gerenc. Polit. Salud,
Bogotá, Colombia, 16 (32): 51-65, January- June 2017). Regarding the cost of
the general social security system the National Superintendence of Health of



Efficiency analysis of public hospitals in Colombia 239

Colombia produces a report entitled ”Financial Information Catalog. Report for
oversight purposes of entities classified in the IFRS Group 1, 2 and 3 for health
service provider institutions (IPS)” [6], details several items which include the
costs of the general social security system of each health service provider in-
stitution (IPS), System costs include Medicines, materials, fees, administrative
services, maintenance, repairs, emergencies, outpatient care, hospitalization, op-
erating rooms, diagnostic support, therapeutic support, high cost , pharmacy
etc. Costs and expenses can be predicted considering the policies and strategies
of each country according to Tarazona, V.C., Guadalajara-Olmeda, N.; Vivas-
Consuelo, D. (2019) [7]. All entities supervised by the National Superintendence
of Health are required to submit the information in this report on a monthly,
quarterly, semiannual and annual basis according to Resolution 1043 of 2006
and the External Circular of the National Superintendent of Health (2016). The
study uses data cut-off as of December of each year from 2017 through 2021 [8].

3 Results

The total number of level 3 public IPS under study are 23 clinics and hospitals
(Figure 1), chosen based on the largest size of the number of beds. The graph
below shows the distribution of beds by the volume of the institutions:

Fig. 1: Number of beds.

The number of efficient IPS varied each year between 2 and 7 (Figure 2).
It was noted that 4 IPS obtained efficient results in 3 out of the 5 years of the
study. 7 IPS achieved a higher average efficiency rating over the whole 5 years.
22% of the IPS are close to the efficient frontier and need to reduce all their
inputs by between 2% and 13%, while 69% of the IPS need to reduce all inputs
by between 18% and 55% in order to be on the efficient frontier. Finally, the
9% of IPS furthest from the efficient frontier need to reduce all their inputs by
between 70% and 83%.
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Regarding the evolution of efficiency between 2017 and 2021, it was noted
that the average efficiency of all the IPS increased between 2017 and 2019 but
decreased between 2020 and 2021.

Fig. 2: Evolution of efficiency years 2017 to 2021.

The costs of the general social security system increase (Figure 3), there is
evidence of an increase in external outpatient consultations in the years 2017 to
2019, the years 2020 and 2021 decrease, with a percentage variation of 14.4%.
The number of hospital emergencies shows a notable decrease for the years 2020
and 2021(Figure 4). The number of hospital discharges behaves normally with
few increases, with the exception of 2019 and the proportion of readmissions of
patients hospitalized in less than 15 days increases every year.

22% of IPS are close to the efficient frontier and need to reduce all their
inputs between 2% and 13%, 69% of IPS need to reduce all inputs between 18%
and 55% to be on the efficient frontier and 9% of IPS is very far from the efficient
frontier need to reduce all their inputs between 70% and 83%.

The evolution of average efficiency in clinics and hospitals between 2017
and 2021 increased between 2017 and 2019, but decreased between 2020 and
2021(Table 1). The cause of decreased efficiency in 2019 and 2021 is likely to be
the covid 19 pandemic.
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Fig. 3: Inputs. Fig. 4: Outputs.

Fig. 5: IPS Near the efficient frontier.
Fig. 6: 69% IPS should reduce their In-
puts.

Fig. 7: Average Efficiency Data.
Fig. 8: Average efficiency

The public resources allocated to each IPS have a percentage variation of
12.3%, i.e. the budget increased between 2017 and 2021 and finally the number
of beds increases with a percentage change of 5.3%, especially in 2020 and 2021.

4 Conclusions

• Of the 23 public hospitals (IPS), none remained on the efficient frontier
during the 5 years of the study.

• The DEA method identifies efficient IPS and inefficient IPS.
• The results probably show that the covid 19 pandemic affected efficiency by
decreasing it in all IPS.

• The costs of the general social security system increase, including in pan-
demic years.

• Efficiency increased during the first three years of the study, decreased in
the last two years.
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• The study can help understand the impact of efficiency and inefficiency on
some important variables in health care processes in public clinics and hos-
pitals.
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8. Prada-Ŕıos SI, Pérez-Castaño AM, Rivera-Triviño AF. (2017) “Clasificación de in-
stituciones prestadores de servicios de salud según el sistema de cuentas de la salud
de la Organización para la Cooperación y el Desarrollo Económico: el caso de Colom-
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Abstract. Artificial Intelligence plays a crucial role in making impactful
decisions for individuals and society. The effectiveness of AI and machine
learning heavily relies on the quality of the training data. Hence, ensuring
fairness becomes vital during the training process itself. The presence of
class imbalance is a common issue in clinical data analysis, leading to
datasets with extreme class imbalance that affects classifier performance.
This paper introduces an innovative method to select a threshold that
minimizes the difference between sensitivity and specificity in classifiers,
using a risk estimator for ischemic heart disease as a case study. Data
from the Behavioral Risk Factor Surveillance System survey is used,
comprising approximately 400,000 respondents, with the positive class
representing about 10% of the surveyed population.
The proposed approach involves an alternative strategy for handling class
imbalance by identifying an appropriate classification threshold based on
the intensity of the imbalance, rather than using the standard 0.5 thresh-
old. This new threshold selection criterion provides a clear and explicit
way to handle type I and type II errors, assigning equal importance in the
absence of expert knowledge about their relative costs. Additionally, an-
alyzing score distributions separated by classes aids result interpretation
and offers valuable context to end users.
In summary, this research emphasizes the importance of integrating fair-
ness into AI training processes and proposes a threshold selection method
tailored to class imbalance intensity. The approach demonstrates promis-
ing results in addressing the challenges of imbalanced data, particularly
in the context of healthcare risk assessment.

Keywords: AI-based models, fairness, imbalanced-data, healthcare.

1 Introduction

1.1 Bias and fairness in AI-based systems

Artificial Intelligence (AI)-based systems are nowadays extensively utilized to
make decisions that hold far-reaching implications for individuals and society as
a whole. The impact of these decisions can affect everyone, anywhere, and at any
time, raising concerns about potential human rights issues. Related to this issue,
AI and machine learning are limited by the quality of data on which they are
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trained. The generalizability of AI algorithms across subgroups is critically de-
pendent on factors like representativeness of included populations, missing data,
and outliers. The process by which the data are generated may be more impor-
tant and particular to AI. If AI algorithms use data that are generated through a
biased process, then the output may be similarly biased producing a result that
differs from the true underlying estimate. This is a significant challenge when
using clinical data sources [1]. Consequently, it becomes imperative to transcend
conventional AI algorithms solely optimized for predictive performance and in-
stead incorporate ethical principles into their design, training, and deployment.
By doing so, we can ensure the promotion of social good while still harnessing
the immense potential of AI technology. Considering potential biases, this is not
a new problem rather “bias is as old as human civilization” and “it is human
nature for members of the dominant majority to be oblivious to the experiences of
other groups.” [2]. Nonetheless, the application of AI-based decision-making has
the capacity to amplify pre-existing biases and introduce novel classifications
and criteria, carrying significant potential for new types of biases. The rising
apprehensions surrounding this issue have prompted a reassessment of AI-based
systems, advocating for new approaches that prioritize the fairness of their deci-
sions. Therefore, fairness should be integrated into the training process itself [3].
In addition to this potential statistical bias, it is essential to take into account
social biases as far as could be caused by a statistically biased algorithm or by
other human factors, including implicit or explicit bias. For example, clinicians
may incorrectly discount the diagnosis of myocardial infarction in older women
because these patients are more likely to present with atypical symptoms. At
this point, one of the critical aspects linked to both data quality and human
factors that may include biases is data imbalance and the techniques employed
for its handling.

1.2 The common challenge of imbalanced data

Many real-world domains are, by definition, class imbalanced by virtue of having
a majority class that naturally has many more instances than its minority class.
Subsequently, class imbalance in classification models is also a common issue
within clinical data analysis [4]. These phenomena lead to datasets with ex-
treme levels of class imbalance, which impacts the performance of the classifiers.
Models trained with such datasets will exhibit bias towards the most prevalent
majority classes because of their higher prior probabilities, while often ignoring
the minority classes. However, despite being a subject of interest for over two
decades, it remains a profound area of research aimed at achieving improved ac-
curacy [5]. Regarding machine learning, class imbalance techniques are typically
categorized into two groups: data-level techniques and algorithm-level methods.
Data-level techniques concentrate on manipulating the distribution of the train-
ing dataset to lighten the imbalance innate in the original data. The two fun-
damental paradigms within this category are: (1) random oversampling (ROS),
which duplicates samples from minority classes, and (2) random undersampling
(RUS), which discards samples from majority classes. While the simplicity and
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efficiency of combining ROS and RUS methods might appear attractive, when
featuring extreme levels of class imbalance, repeatedly oversampling from the
same data within the minority classes can lead the model to memorize irrelevant
features that may hold no actual utility for those respective classes [6]. Some of
the most frequently mentioned drawbacks of these methods for correcting imbal-
ances in the training sample include a) the loss of useful information associated
with the observations discarded in the case of under-sampling; and b) the risk of
overfitting the model to irrelevant features of the observations from the minority
class in the case of oversampling, which becomes excessively homogeneous as
a result of replicating a small number of available observations. The SMOTE
technique [7] offers a way to avoid excessive homogeneity by generating artificial
observations through combining features from available records for the minor-
ity class, with the threat that these new instances may be unrealistic. Another
challenge arises with these strategies as far as the model requires testing and val-
idation on a test sample exhibiting the same level of class imbalance as observed
in the phenomenon being modeled. This guarantees that performance metrics
can be taken as estimates of the model’s real-world performance when deployed
on actual data. Rather than using the common approaches of undersampling
or oversampling, identifying an appropriate threshold corrects the effect of class
imbalance without disrupting the training sample. In this paper we consider the
potential negative outcomes from poor data quality on healthcare and the effect
when applying an innovative strategy to tackle class imbalance by replacing the
standard 0.5 threshold. Thus, the challenge addressed is to develop a model capa-
ble of identifying significant risks of ischemic heart disease based on incomplete
and non-clinical detailed information. The objective is to identify individuals
early on and prompt them to seek expert diagnostic evaluation from healthcare
services. The developed model aims to estimate the risk of ischemic heart disease
(i.e. heart attack and angina pectoris). To reach this goal, within this paper an
alternative method is propose to choose the threshold that minimises the differ-
ence between sensitivity and specificity of a classifier using an estimator of risk
of ischemic heart disease as use case because: 1) in the absence of expert medical
knowledge that allows an informed assessment of the costs associated with each
type of error, the chosen threshold assigns the same importance to false positives
and false negatives, and 2) when sensitivity and specificity are very similar, the
overall accuracy rate, also takes a very close value to both, reducing the disparity
between the most common performance metrics evaluation and facilitating the
comparison between different specifications of the same model.

2 Method

2.1 Participants

This method has been applied to a model for predicting the risk of ischemic
heart disease (i.e. heart attack and angina) in the US population using low-
quality data from almost 400,000 people surveyed within the Behavioral Risk
Factor Surveillance System survey. Positive class (i.e. individuals who reported
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having experienced a heart attack or angina pectoris) accounts approximately for
10% of the participants, while also highlighting significant differences between
genders.

Considering this type of sampling, the sample exhibits various biases that
impact the quality of the data: 1) survivor bias, because it does not include
those who died from cardiovascular accidents, 2) protopathic bias, as far as only
information on lifestyle after the diagnosis of heart disease is recorded, which
often is modified as a result of the ischemic episode or its sequelae [8], and 3) a
bias associated with only knowing the age of the respondent at the time of the
survey, and not when the coronary accident happened, which makes it impossible
to adopt an actuarial approach to the problem.

2.2 Procedure

The dataset used in this study was collected through the Behavioral Risk Factor
Surveillance System survey (US). This telephone-based survey focuses on public
health and gathers non-specialized information regarding diagnosed diseases,
subjective perception of the respondent’s health status, dietary habits, exercise
routines, and more. However, it does not provide information about clinical tests
(e.g. blood pressure, blood analysis, etc.).

2.3 Data Analysis

Firstly, an exploratory analysis was conducted to analyse the data distribu-
tion. After identifying the need of established separated models by sex, several
trained classifiers were applied including: logistic regression, K-Nearest Neigh-
bors, Stochastic Gradient Descend (SGD), decision trees, random forest, Adap-
tive Boosting (Adaboost), Gradient Tree Boosting (with tree and linear booster),
Extreme Gradient Boosting and Category Boosting, with and without adjust-
ment of their internal weights for algorithms that allow it, and with the selection
of their hyperparameters through grid search in a cross-validation process.

Subsequently, two alternative strategies were adopted. Firstly, the adjust-
ment of the internal weights of the classification models that allow for this cor-
rection to compensate for the effect of imbalance. Secondly, the search for specific
classification thresholds for each trained model so that they produce balanced
metrics in the validation set.

3 Results

The exploratory analysis shown the convenience of developing separated models
by sex, so that the weight of the explanatory factors may be different. This was
confirmed by the results of a trial and error process of different specifications of
the tested classification models (Fig 1).

Women and men also show different patterns in terms of the explanatory
factors of ischemic disease and the intensity of correlations. As shown in Figure
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Fig. 1: Relative frequency of ischemic heart disease in women and men according
to age

1, in both cases the risk of ischemic heart disease increases, but notably more
sharply for men, especially from the age of 50.

Among the explanatory variables, sex stands out because the rest of the
factors have a different effect for men and women. Therefore, separate models
have been trained.

The remaining explanatory variables were selected through an iterative pro-
cess of trying different combinations of regressors. The chosen ones include the
factors identified by medical science as predictors of cardiovascular risk: age,
diabetes, tobacco, overweight and alcohol consumption, etc., and some others
that managed to improve the quality of the results in the trials for the selection
of regressors: self-reported health status, diagnoses of arthritis, gout, lupus, and
fibromyalgia, stroke history, COPD and regular medical follow-up.

Several imbalance handling strategies have been tested: undersampling, ad-
justment of the internal weights of the algorithms that offer this possibility, and
classification threshold tuning. On one hand, addressing the imbalance in the
training subset leads to models that do not generalize effectively when evaluated
on the original imbalanced population. On the other hand, internal weights of
the models were adjusted to balance the influence of the two classes during the
training process. The latter are those identified with the prefix ’b ’ in Table 1.
The results obtained are show in Table 1.

Finally, several criteria for selecting the classification threshold were tested.
The imbalance handling method that yields the best results for this problem,
which also stems from a dataset with modest predictive capacity, is the threshold
selection that minimizes the difference between recall and specificity.

The undersampling strategy is characterized by artificially reducing the size
of the negative observation subset so that the two classes have the same rep-
resentation in the training set. The disadvantage of this procedure is that the
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error rates obtained in the rebalanced subset are not generalizable to the gen-
eral population and the model thus trained fails when faced with the imbalance
that characterizes the population of inter-est. Indeed, when the negative class
is resized to restore its relative size with respect to the positive class, true and
false positives are expected to increase in a similar proportion. When the imbal-
ance is intense and the false positive rate is high (as happens when the available
data are not informative enough, as is the current use case), the proportion of
false positives in the total population significantly increases, sinking the preci-
sion metric. Furthermore, if the specificity is lower than the recall, accuracy is
also reduced.

The adjustment of internal weights produces, in most cases, more balanced
models regarding recall and specificity. The effect of this adjustment varies de-
pending on the algorithm used, and we have no control over the handling of
different types of error. This is shown in the associated ROC curves (Fig 2):
for models without internal weight adjustment, the standard 0.5 threshold offers
specificities close to 1 and recall close to 0; while in models with weight adjust-
ment, the same threshold provides results closer to the diagonal of the ROC
curve, on which specificity and recall are equal.

Fig. 2: ROC curves and 0.5 threshold for the trained models

As for the selection of the classification threshold, we propose choosing the
one that minimizes the difference between recall and specificity. This implies that
without expert information regarding the costs of Type I and Type II errors, we
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Table 1: Metrics of models at 0.5 and optimal thresholds.
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treat both types of errors with equal importance. Geometrically, the threshold
as close as possible to the diagonal of the ROC curve is chosen. This criterion is
especially suitable when there is no expert knowledge to assess the relative cost
of the two types of error: not detecting a patient at high risk or unnecessarily
alarming a patient at low risk. In geometric terms, the aim is to find the threshold
closer to the diagonal of the ROC curve.

One advantage of this threshold is that when recall and specificity are ap-
proximately equal, the accuracy rate is also nearly the same . This desirable
effect means that, in such a scenario, the precision rate depends only on the
accuracy and the extent of the imbalance. The greater the accuracy and the less
the intensity of the imbalance, the greater the precision. Formally:

Precision =
sensitivity · # positive obs.

sensitivity · # positive obs.+(1− specificity) ·# negative obs.

(1)

∼ accuracy · # positive obs.

accuracy · # positive obs. +(1− accuracy) · # negative obs.

=
1

1 + 1−accuracy
accuracy · # negative obs.

# positive obs.

.

(2)

These two properties greatly facilitate the comparison of performance metrics
from different models, eliminating large disparities between those that offer high
specificity with low recall and vice versa. On the one hand, the three metrics
representing success rates in the population (accuracy) or in a subpopulation
(the positive class in the case of recall and the negative class in the case of
specificity) are very similar for each model. On the other hand, the precision
rate can be disregarded, which will be given by the accuracy of each model and
the intensity of class imbalance, common to all models. In summary, the choice
of one model over another becomes a univariate decision problem (except for
irreducible distances in metrics).

4 Discussion

AI is making its way into clinical practice. AI can create or perpetuate biases
that may worsen patient outcomes. However, by strategically deploying AI and
carefully selecting underlying data, algorithm developers can mitigate AI bias.
Addressing bias could allow AI to reach its fullest potential by helping to im-
prove diagnosis and prediction while protecting patients. Additionally, clinicians
may have a propensity to trust suggestions from AI decision support systems,
which summarize large numbers of inputs into automated real-time predictions,
while inadvertently discounting relevant information from non-automated sys-
tems —so-called automation complacency.

Although much of the discussion about AI and bias has focused on its po-
tential for harm, strategies exist to mitigate such bias. In this vein, the results
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allow us to identify a novel method aimed at mitigating the potential negative
effects of imbalanced data in a specific challenge, such as the one presented in
this study around risk estimation of ischemic heart disease.

The models evaluated, each using a threshold with this property, present
balanced metrics that simplify their comparison and aid in selecting the most
appropriate one. The results clearly show a stable inverse relationship between
accuracy and precision.

As for the utility of the model for the end user, we are particularly concerned
that the information associated with a specific prediction is comprehensible.
Typically, the predictions of a classification model are offered in two forms: the
binary prediction (positive or negative, in this case, associated with a high or
low risk of ischemic heart disease respectively) or a numerical prediction ranging
between 0 and 1, which is usually interpreted as a measure of the probability
that the example belongs to the positive class. In this use case, this information
offered in isolation is not sufficient by itself, as the classification threshold is much
lower than the standard 0.5 that is usually adopted as a reference to separate
positive and negative predictions. Moreover, the distribution of these scores for
the sample population varies greatly between models and, with them, the ideal
threshold in each case. However, the distribution of scores for the selected model
provides useful contextual information for the user. Specifically, it allows them to
identify their relative risk referred to that associated with the general population
and to the positive and negative classes separately.

In particular, for example, for a user with a score equal to the classification
thresh-old of the chosen model, the proportion of observations of the negative
class with a score lower than theirs is equal to the proportion of observations of
the positive class with a score higher. That is, there is the same proportion of
low-risk population with a score below theirs as there is of high-risk population
with a score higher. In the rest of the cases, the proportions of low and high risk
population with scores below and above their own provides a useful context for
the user to assess the level of relative risk associated with their situation.

In summary, the analysis of the distribution of scores provided by the model
offers contextual information that complements other interpretability strategies
for black box models that are also applicable in this case: Shap values for the user-
declared features, the distribution of these values in the population, permutation-
based methods, etc.

Conclusions are specific for models characterized by a predictive capacity
limited by the poor quality of the available data and a strong class imbalance,
two features that characterize research in healthcare. In this scenario, imbalance
treatment strategies based on correcting the training subsample do not generalize
effectively to the population.

The proposed threshold selection criterion is characterized by providing a
clear and explicit criterion for the treatment of type I and type II errors, to
which, in the absence of other expert knowledge about their relative costs, the
same importance is attributed. In addition, the analysis of score distributions
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separated by classes facilitates the interpretation of results and provides addi-
tional context to the end user.

In conclusion, the adoption of AI is poised to bring about a paradigm shift
in healthcare, where its performance in medical tasks, including clinical diag-
nosis. AI holds substantial potential in healthcare, empowering clinicians to de-
liver more precise and timely diagnoses and design effective treatment strategies.
Nonetheless, the legitimate concern of exacerbating pre-existing healthcare dis-
parities with the implementation of AI models remains. Regrettably, in numer-
ous diagnostic and prognostic clinical applications, the ”ground truth” utilized
for fairness assessment metrics might already encompass inherent biases and be
intertwined with suboptimal outcomes that cannot be solely attributed to clini-
cal features. Consequently, the medical AI community must transcend the mere
evaluation of AI models’ clinical readiness using methods and metrics reliant on
potentially biased and continuously evolving clinical ground truth.
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Abstract. It is well known (see [3], for instance) that Chebyshev’s
method presents some interesting dynamical properties, like superat-
tracting n-cycles or superattracting extraneous fixed points. The main
focus of this work, framed in the context of polynomial root-finding al-
gorithms, will be to give a numerical and graphical study of the dynam-
ical behaviour of Chebyshev’s method based on the computation of the
Lyapunov exponents of the discrete dynamical system induced by the
iteration of a rational map.
In [1], a novel method to compute the basins of attraction induced by
the iteration of a rational map was introduced and implemented. The
present work can be considered as a continuation of this previous article.
Also, the implementation in Julia Language (which can be found in [2])
of the algorithms that allows us to compute the Lyapunov exponents and
the basins of attraction induced by a rational map solves some frequent
computational problems, like overflows or indeterminations.

Keywords: Chebyshev’s method, Lyapunov exponents, dynamical study,
polynomials, root-finding algorithms, numerical methods

1 Introduction

Chebyshev’s method is, to this day, one of the most used and studied root-finding
numerical methods for non-linear equations. In this work, which can be consid-
ered as a continuation to [1], we undertake a dynamical study of this method
when applied to cubic polynomials. In order to do this, we will consider the novel
techniques and algorithms presented in [1] to compute the Lyapunov constants
associated with the rational map induced by Chebyshev’s method when applied
to a polynomial. By studying these Lyapunov constants (closely related with the
well-known Lyapunov exponents of the discrete-time dynamical system induced
by the iteration of the rational map) we will be able to extract useful informa-
tion regarding the dynamics of Chebyshev’s method for the particular case of
cubic polynomials, as we will observe in the following sections. It is important
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to note that the techniques we will consider for our study are topological and
geometrical in nature, involving broadly-studied constructions such as the Hopf
fibration S3 → P 1(C) or the complex projective line P 1(C). In this proceeding,
we will not delve into the technical details of our considered framework, since
every detail can be checked in [1].

It is also worth mentioning that the algorithms used for this study are imple-
mented in Julia Language and are able to avoid some computational problems
that often arise in Numerical Analysis, such as overflows, underflows and math-
ematical indeterminations. The implementation of the algorithms, along with a
user guide and many examples, can be found in the GitHub repository [2].

2 Theoretical framework

As we have already stated, for the sake of simplicity we will not delve into the
technicalities behind the considered theoretical framework, and since every de-
tail can be found in [1]. However, there are some important observations to be
made regarding the way our algorithms represent rational maps and how do we
compute its associated Lyapunov constants.

In order to avoid some computational problems like overflows or indetermi-
nations, we represent each rational map f : P 1(C) → P 1(C) defined over the
Riemann sphere (in particular, over the complex projective line P 1(C)) as an
irreducible r-homogeneous pair of bivariate polynomials R = (F,G) (see [1]).
We consider the usual 3-sphere S3 = {(z, t) ∈ C2 | |z|+ |t| = 1}, which we take
as a subspace of C2. Given the following commutative diagram induced by the
Hopf fibration S3 → P 1(C)

C2 \ {(0, 0)} C2 \ {(0, 0)}

S3 S3

P 1(C) P 1(C)

R

p p

RS

q q

RP

one has that the pair R = (F,G) (and consequently, the rational map f) can
be studied through its associated Hopf-endomorphism (RS , RP ). This way of
representing a rational map f is very suitable for a computational environment,
and allows our algorithms to avoid the mentioned computational problems, and
to compute the basins of attraction induced by the iteration of f over the whole
Riemann sphere Ĉ ∼= P 1(C), including the infinity point ∞.

We will also consider the spherical derivative of a rational map f : Ĉ → Ĉ,
instead of the usual notion of derivative, in order to define the standard notions
of super-attracting, attracting, indifferent and repulsive fixed points and cycles.



Dynamical study of Chebyshev’s method 259

The spherical derivative f# : Ĉ→ R+ = {r ∈ R | r ≥ 0} of a rational map f is
given by

f#(z0) = |f ′(z0)|
1 + |z0|2

1 + |f(z0)|2
, (1)

where f ′(z0) denotes the usual derivative of f in z0 ∈ Ĉ, for every z0 ∈ Ĉ.
Note that if f ′ is not defined in z0, we can define f#(z0) as the limit of the

expression above when z → z0, and it can be proven that this limit always exist,
f# is well defined and it is continuous. Also, since f# is continuous and Ĉ is
compact, f# is bounded.

Hence, we will say that z0 ∈ Ĉ is a critical point of f if f#(z0) = 0, and
we will also consider the usual notions of super-attracting, attracting, indifferent
and repelling points and cycles, using the spherical derivative f#.

We consider this particular notion of the derivative of a rational map since a
computationally-suitable expression of the spherical derivative of a rational map
defined over the complex projective line P 1(C) can be proven (see [1]) and this
notion is also useful when addressing the connection of the presented methodol-
ogy with Lyapunov exponents (as it was shown in [1]).

As a final note on the theoretical framework considered for this dynamical
study, we will briefly introduce the notions that allow us to make calculations
regarding the basins of attraction induced by the iteration of a rational function
and the Lyapunov exponents of the induced discrete-time dynamical system.

Let X be a topological space, and let f : X → X and ϕ : X → R+ be
continuous maps. We define the function Lf (ϕ) : X → [0,+∞] given by the
expression

Lf (ϕ)(x) = lim
n→+∞

(
n−1∏
k=0

ϕ(fk(x))

) 1
n

, (2)

which we will call the Lyapunov function of f associated with ϕ.
It is important to note that Lyapunov functions are used frequently in the

context of Dynamical Systems to study local stability. In our case, despite that
the function Lf (ϕ) is not a Lyapunov function in that context, we will also call
it a Lyapunov function, since it will also be used to study local stability and
dependency on initial conditions. Of course, in order to be able to compute this
function, we will work with finite approximations.

As it was shown in [1], these Lyapunov functions, under certain conditions
(that hold for our study), are constant in each basin of attraction induced by
the iteration of the map of f . We will refer to these constants as the Lyapunov
constant associated with each basin of attraction. This way, by computing these
Lyapunov constants, we are able to distinguish between the different basins of
attraction induced by f .

For our study we will consider X = P 1(C), f a rational map (induced by
Chebyshev’s method applied to a cubic polynomial) represented by its induced
Hopf-endomorphism, and ϕ = f# the spherical derivative of f (defined over
P 1(C)). In this particular case, the logarithm of a Lyapunov constant is precisely
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a Lyapunov exponent of the discrete-time dynamical system induced by the
iteration of the rational map f (see [1]).

3 Dynamical study of Chebyshev’s method on cubic
polynomials

3.1 Preliminaries

Our main goal in this study is to analyze the dynamics that Chebyshev’s method
induces when applied to a cubic polynomial, using the previously mentioned the-
ory about Lyapunov functions and Lyapunov constants. In this regard, different
algorithms have been implemented in Julia Language (see the GitHub reposi-
tory [2]) to compute the Lyapunov constants of an arbitrary rational map, and
to construct Chebyshev’s parameter plane using the notions that make up our
theoretical framework.

We recall that, if f(z) is a differentiable function, Chebyshev’s method ap-
plied to f is given by the iteration of the induced map:

Cf (z) = z −
(
1 +

1

2
Lf (z)

)
f(z)

f ′(z)
, (3)

with Lf (z) =
f(z)f ′′(z)
(f ′(z))2 . It is important to address that, despite the notation, in

the previous expression the operator Lf is not related in any way to the described
Lyapunov functions, and it is used simply to define Chebyshev’s method in a
more tractable way. Also, note that if p(z) is a polynomial, Cp(z) is a rational
map that has the roots of p as superattracting fixed points.

In order to undertake a dynamical study of these characteristics, we will be
using two well-known theorems: The Scaling Theorem for Chebyshev’s method,
and Fatou’s Theorem.

The first theorem states the following: Let T (z) = αz + β, where α ̸= 0,
be an affine map in C, and let λ ∈ C \ {0}. Let p(z) be a complex polynomial,
and define q(z) = λ(p ◦ T )(z). Then, the rational maps Cp and Cq induced by
Chebyshev’s method are conjugate by T ; that is, Cp◦T = T ◦Cq. This essentially
tells us that if two polynomials differ only by an affine map and a complex non-
zero constant, then they share the same dynamics. Therefore, in order to study
the dynamics of every cubic polynomial, it suffices to restrict ourselves to the
family of polynomials of the form pλ(z) = (z − λ)(z2 − 1) (since one can always
fix two of the roots of a cubic polynomial to the points 1 and −1 through an
affine map).

Fatou’s Theorem states that, if f is a rational map then, if f has some at-
tracting k-cycle, then at least one of its critical points converges to it. Therefore,
in order to study whether if a rational map presents attracting cyclic behaviour
or some kind of attracting extraneous fixed point under iteration, it suffices to
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study the orbits of its critical points. As it was remarked in [3], the critical points
of the function Cp induced by Chebyshev’s method are precisely the roots of

(Cp)
′(z) =

(3− Lp′(z))(Lp(z))
2

2
, (4)

where Lp′(z) = p′(z)p′′′(z)
(p′′(z))2 . Moreover, in the particular case that pλ is a polyno-

mial of the form pλ(z) = (z− λ)(z2 − 1), we have that (see [3]) for almost every
value of λ the only free critical points (that is, critical points which are not the
roots of pλ) are

γ1(λ) =
5λ−

√
−5(λ2 + 3)

15
and γ2(λ) =

5λ+
√
−5(λ2 + 3)

15
. (5)

Hence, to study the dynamics of Chebyshev’s method when applied to a polyno-
mial of the form pλ(z) = (z − λ)(z2 − 1) (for almost every value of λ) it suffices
to study the orbits of the points γ1 and γ2 under the iteration of Cpλ

.

3.2 Algorithm

In order to study the dynamics of Chebyshev’s method when applied to cubic
polynomials we will consider the following procedure:

1. Since every cubic polynomial share the same dynamics (under Chebyshev’s
method) with a polynomial of the form pλ(z) = (z − λ)(z2 − 1), we will
construct a grid of complex points λ (a parameter plane), each of which
represents the polynomial pλ.

2. We will apply Chebyshev’s method to each polynomial pλ in the grid, ob-
taining a rational map Cpλ

. Then, we will use the algorithms implemented
in [2] and described in [1] in order to study the orbits of the free critical
points γ1 and γ2 (using Lyapunov constants).

3. If the orbits of both γ1 and γ2 converge to a super-attracting fixed point of
Cpλ

(that is, a root of pλ), we will assign a color to the point λ, depending
on which root each orbit converges to (note that there are 9 possibilities). If
either the orbit of γ1 or the orbit of γ2 converges to an attracting k-cycle,
we will assign λ a different color, and another one if some orbit converges
to an attracting extraneous fixed point. Then, we will graphic the numerical
results of our considered parameter plane.

3.3 Graphical results

In this last section we present some graphical results obtained by the described
procedure.

In Figure 1 the region [−2.5, 2.5] × [−2.5, 2.5] of our parameter plane is vi-
sualized. As we can see, in the plot on the left 12 different colors appear. The
color 0 (red) corresponds to regions for which the polynomials pλ present some
kind of attracting k-cyclic behaviour when Chebyshev’s method is applied. The
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Fig. 1: Parameter plane of Chebyshev’s method on cubic polynomials

color 2 (blue) corresponds to regions for which the induced rational map Cpλ

presents an attracting extraneous fixed point. The color 1 (green) corresponds
to regions for which the induced rational map Cpλ

have both attracting cyclic
behaviour and an attracting extraneous fixed point. Every other color corre-
sponds to regions for which the orbits of the two free critical points γ1 and γ2
of Cpλ

converge to one of the 3 roots of pλ, distinguishing the 9 possibilities.
In the plot on the right the exact same thing is depicted, but in this case the 9
possibilities of the orbits of the free critical points converging to one of the roots
of the polynomial are represented by the same color 3 (dark blue), in order to
visualize more clearly those regions in which cyclic behaviour appears. As one
can observe, in the considered rectangle of the parameter plane, these regions
are relatively small.

Fig. 2: Parameter plane of Chebyshev’s method on cubic polynomials
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Fig. 3: Parameter plane of Chebyshev’s method on cubic polynomials

In Figures 2 and 3 we can observe with more detail one of the regions for
which cyclic behaviour appear. In particular, we see that the main cardioid of the
Mandelbrot-like set in the center of each plot corresponds to polynomials that
present an attracting extraneous fixed point under the iteration of Chebyshev’s
method, and the smaller bulbs of this set correspond to polynomials that present
different kinds of cyclic behaviour.

Fig. 4: Distribution of the cyclic behaviour in the parameter plane

One might also be interested in studying which particular kind of cyclic be-
haviour does each polynomial induce; that is, to distinguish between polynomials
that induce attracting 2-cycles, 3-cycles,... In this regard, on the right plot in
Figure 4 we have modified slightly the coloring strategy in order to make this
distinction clear. In this plot, the color 1 (green) corresponds to polynomials
that do not present any kind of attracting cyclic behaviour, neither any attract-
ing extraneous fixed point, when Chebyshev’s method is applied. Colors 2, 3, 4,
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and so on, correspond to polynomials that induce an attracting extraneous fixed
point, an attracting 2-cycle, an attracting 3-cycle, and so on, respectively. The
color 0 (red) corresponds to the case where the considered maximum number
of iterations of the algorithm was not enough for the orbits of the free critical
points to converge.

We can note that the distribution of the attracting k-cyclic behaviour on the
depicted Mandelbrot-like set closely resembles the distribution of the hyperbolic
components of the classic and widely studied Mandelbrot set. Despite the fact
that this resemblance is clear from a numerical point of view, currently there is
not a known theoretical justification that supports it.

Fig. 5: Computed Lyapunov constants in a region with cyclic behaviour

Since, as we have mentioned, for these calculations in the parameter plane we
are computing the Lyapunov constants associated with the basins of attraction
in which each free critical point γ1 and γ2 of Cpλ

lies, we can also visualize
the value of these Lyapunov constants in the parameter plane. In Figure 5, the
left plot represents the computed Lyapunov constants associated with the free
critical point γ1, and the right plot represents the computed Lyapunov constants
associated with γ2. In these plots, the color white represents that the computed
Lyapunov constant is 0; that is, that the orbit of the respective free critical point
converges to a super-attracting fixed point or cycle. The color black represents
that the computed Lyapunov constant is 1, and the different shades of grey
correspond to the values between 0 and 1. Hence, the darker a point in the
parameter plane is, the less attracting is the basin of attraction in which the
respective free critical point lies.

Considering the same rectangle as in Figures 3 and 4, in Figure 5 we see that
a vertical symmetry appears between the respective plots for γ1 and γ2. This is
due to the vertical symmetry that the parameter plane itself exhibits, and that
can be seen in Figure 1. In this case, one can observe that, in the Mandelbrot-
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like set that can be seen in Figure 3 for which there is cyclic behaviour and
extraneous fixed points, its right half is due to the convergence of the orbit of
γ1 to an attracting cycle or attracting extraneous fixed point, and its left half is
due to the convergence of the orbit of γ2.

This particular symmetry in the Mandelbrot-like regions does not always
appear. For example, in Figure 6 we can see another Mandelbrot-like set corre-
sponding to the appearance of attracting cycles or attracting extraneous fixed
points in the rectangle [−0.74,−0.68] × [1.95, 2.01] in the parameter plane. In
this case, we see that the free critical point that it is converging to an attracting
cycle or attracting extraneous fixed point is γ1 on the entire Mandelbrot-like
region.

Fig. 6: Computed Lyapunov constants in a region with cyclic behaviour

In conclusion, we believe that the techniques used for this study are a useful
tool from which much information regarding the dynamics of a root-finding
numerical method such as Chebyshev’s can be extracted. The development of
these techniques might lead to some advances in this direction for this and other
root-finding numerical methods.
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1 Introduction

Fractional differential equations have gained significant attention in recent years
due to their ability to model complex phenomena in various scientific and engi-
neering fields. Fractional calculus, a branch of mathematics dealing with deriva-
tives and integrals of non-integer order, is employed to formulate them.

This paper presents a comprehensive study on the existence of solutions for
large class of fractional differential equations in Banach algebras and proposes
an efficient approximation method to numerically solve them.

Specifically, this study focuses with a rigorous analysis of the existence of an
unique solution for the class of fractional differential equations of the type

Dα

(
x(t)−

∑m
j=1 Iβjhj(t, x(t))

f(t, x(t))

)
= g(t, x(t)), t ∈ J,

x(0) = a and x(1) = b,

(1)

where J = [0, 1], a, b are real constants, Dα is the Caputo derivative of order
α, 1 < α ≤ 2, Iβj is the Riemann-Liouville fractional integral of order βj > 0,
j = 1, . . . ,m, and f : J ×R→ R \ {0}, hj : J ×R→ R,, j = 1, . . . ,m, are given
functions.
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The Caputo fractional derivative and Riemann-Liouville fractional integral
operators are defined as follows (see [3], [4] for details).

Definition 1. Let f : [0,∞) → R be an (n − 1)-times absolutely continuous
mapping. The Caputo derivative of fractional order q of the function f is given
by

Dqf(t) =
1

Γ (n− q)

∫ t

0

(t− s)n−q−1f (n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2. Let f : R+ → R be a continuous function. The Riemann-Liouville
fractional integral of order q > 0 is given by

Iqf(t) =
1

Γ (q)

∫ t

0

f(s)

(t− s)1−q
ds, t ∈ R+

provided the right-hand side is point-wise defined on (0,∞). Here the mapping

Γ is defined by Γ (n) =

∫ ∞

0

tn−1e−tdt, n > 0.

Using the theory of fractional calculus and the Boyd-Wong fixed point theo-
rem, sufficient conditions for the existence and uniqueness of solution for (1) are
established. In addition we propose a method of approximating the solution and
a numerical experiment as a sample of the validity of the effectiveness of the
proposed method.

2 Existence, uniqueness and approximation of solutions.

According to an useful result due to Ahmad et al in [1], the problem of existence
of a continuous solution for (1) can be transformed to a fixed point problem on
C(J) of the form:

x = A(x) ·B(x) + C(x). (2)

where the space C(J) of all continuous functions on J is endowed with the
supremum norm ∥ · ∥.

Therefore, to study this problem we use the Boyd-Wong Theorem [2] which
ensure that every nonlinear contraction mapping in a Banach space E, S : E → E,
i.e., there exists a continuous function Ξ : [0,∞)→ [0,∞) such that Ξ(r) < r if
r > 0, and

∥S(x)− S(y)∥ ≤ Ξ(∥x− y∥), ∀x, y ∈ E,

has a unique fixed point in E and moreover for any x ∈ E, the sequence
{Sn(x), n ∈ N} converges to this point.
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The conditions for the existence of a unique continuous solution in certain
BR (closed balls of C(J)) are rigorously derived in terms of a generalized Lips-
chitz condition with respect to the space variable called D-Lipschitzian, i.e.,
F : J × E → E is called D-Lipschitzian with respect to the space variable, if
there exist a continuous function L : J → J and a nondecreasing, continuous
function Ξ : [0,∞)→ [0,∞) with Ξ(0) = 0 such that

∥F (t, x)− F (t, y)∥ ≤ L(t)Ξ(∥x− y∥), ∀t ∈ J, x, y ∈ E.

It allows us to express the solution of (1) as the limit of the sequence of
elements {(A ·B + C)

n
(X0), n ∈ N}, with X0 ∈ BR. Obviously, if it were pos-

sible to explicitly calculate, for each iteration, the expression (A ·B + C)
n
(X0),

then for each n we would have an approximation of the fixed point. But, as a
practical matter, such an explicit calculation is only possible in very particular
cases. For this reason, we need to construct another approximation of the fixed
point which is simple to calculate in practice. For the problem at hand, since B
and C are given by integral operators, we choice to approximate only the power
terms of the operators B and C which are difficult to compute in general, unlike
operator A which is easy to calculate and does not need to approximate their
power terms. So, we will begin with an initial function X0 ∈ C(J) and construct

two sequences of operators
{
B̃m

}
m∈N

and
{
C̃m

}
m∈N

in order to obtain succes-

sive Nm◦. . .◦N1(X0) approximations of the fixed point x̃ of the product A·B+C.

To build these approximations we use fundamental biorthogonal systems in
suitable Banach spaces. Recall that a biorthogonal system in a Banach space E
is a system {un, ξn}n≥1 of E×E∗, where E∗ denotes the topological dual space
of E and un(ξm) = δnm (δ is Kronecker’s delta). A Schauder basis of E is a
sequence {un}n∈N ⊂ E such that for every x ∈ E, there is a unique sequence
{an}n ⊂ R such that

x =
∑
n≥1

anun.

Note that a Schauder basis is always a fundamental biorthogonal system, i.e.,
span{un} = E, under the interpretation of the coordinate functionals as biortho-
gonal functionals.

Furthermore, posed approximation method is performed, demonstrating its
accuracy and efficiency.

3 A numerical example

This subsection is devoted to illustrate the above model with a numerical exam-
ple.
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Example 1. We consider the following example
D5/3


x(t)−

2∑
j=1

I
2j−1

2 hj(t, x(t))

f(t, x(t))

 = g(t, x(t)), t ∈ J,

x(0) = 1
10 and x(1) = 2

10 .

(3)

where g(t, x) = 1
2x

2, hj(t, x) = 1
2x

2 for j = 1, 2 and and f(t, x) is such that
x̃(t) = 1

10 (t + 1) is the solution of the problem in B 1
2
(the closed ball of C(J)

centered in 0 with radius 1
2 ).

Considering the usual biorthogonal systems and with initialX0(t) =
1
5 (t+ 1),

we obtain for m = 2,
∥x∗ − x̃∥ = 0.00636518

where x∗ represents the approximate solution of (3).

4 Conclusion

In conclusion, this work provides a comprehensive investigation into the exis-
tence of a unique continuous solution for the fractional differential equation
(1) and introduces a novel approximation method for their numerical solution.
The established existence results ensure the presence of viable solutions under
appropriate conditions, while the proposed approximation method overcomes
the challenges associated with fractional derivatives. The contributions of this
research are expected to significantly enhance the understanding and numerical
treatment of fractional differential equations, facilitating their application in
real-world problems across diverse applied scientific and engineering disciplines.
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Abstract. In this paper we present a novel and innovative approach
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1 Introduction

In this work we study the existence, uniqueness and solution approximation,
as well as the associated inverse problem of the following integro-differential
problem of the Fredholm type:

∂u(x, t)

∂t
= g(x, t)u(x, t) +

∫ b

a

f(x, s, u(s, t))dµ(s), (x, t) ∈ [a, b]× [0, τ ],

u(x, 0) = u0(x)

. (1)

where µ is a generic probability measure with compact support over [a, b], the
functions g ∈ C([a, b] × [0, τ ]), f ∈ C([a, b]2 × R) and u0 ∈ C([a, b]) are given
and u ∈ C([a, b]× [0, τ ]) is the unknown function to be determined.

As a particular case of the previous model, we will consider the following
model of pollution emmision in a one-dimensional environment, that is a spatial
model in which the agents are located along a linear city. In this context, the
pollution level P (x, t) at time t ∈ [0, τ ] and location x ∈ [a, b] can be modelled
by a reaction-diffusion equation subject to an initial condition at t = 0, which
when heavy pollutants are considered or we are just interested in radioactive
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pollution, take the form (see [9–11]):
∂P

∂t
(x, t) = S(x, t)P (x, t)− δPP (x, t) +

∫ b

a

ϕ(s, x)P (s, t)dµ, (x, t) ∈ [a, b]× [0, τ ],

P (x, 0) = P0(x), x ∈ [a, b]

(2)
with µ a probability measure with compact support over the interval [a, b].

2 Uniqueness of the solution and its approximation

Under the hypothesis that g ∈ C([a, b]×[0, τ ]), u0 ∈ C([a, b]) and f ∈ C([a, b]2 × R)
satisfies a Lipschitz condition with respect to the last variable, problem (1) has a
unique solution that can be obtained as the limit of a sequence of Picard iterants.
It is enough to use the Caccioppoli-Banach Fixed Point Theorem and take into
account the Fundamental Theorem of Calculus, which allows us to state that u
is solution of (1) if, and only if u is a fixed point of the operator

T : C([a, b]× [0, τ ]) −→ C([a, b]× [0, τ ])

defined for (x, t) ∈ [a, b]× [0, τ ] and u ∈ C([a, b]× [0, τ ]) as

(Tu)(x, t) := u0(x) +

∫ t

0

g(x, r)u(x, r)dr +

∫ t

0

∫ b

a

f(x, s, u(s, r))dµ(s)dr, (3)

where “dr” denotes Lebesgue measure.
The use of Shauder bases in the Banach spaces C([a, b]× [0, τ ]) and C([a, b]2 × [0, τ ])

allow us to build operators, easy to compute, that approximate the operator T,
to later derive the construction of a sequence that approximates the Picard ite-
rant sequence, thus obtaining a novel method to approximate the only solution
of the problem (1).

3 The inverse problem with application to pollution
model

In the study of inverse problems, the determination of certain parameters as-
sociated with a given model has been approached from different perspectives.
One of them is based on the Collage theorem, which is a simple but powerful
consequence of Banach’s fixed point theorem (see [3–8]). This technique reads
as follows. Let (X, ∥ · ∥) be a Banach space and Λ ⊂ Rn be a nonempty compact
set. For each λ ∈ Λ, assume that Tλ : X → X is a contractive operator with
contractivity factor cλ ∈ (0, 1) and that u•λ is the unique fixed point of Tλ. Let
u∗ ∈ X be a target element, that is, u∗ is the fixed point (or an approximation)
of the operators Tλ and we are interested in estimating the parameter λ∗ ∈ Λ
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such that Tλ∗(u∗) = u∗.

According to the Collage theorem,

∥u•λ − u∗∥ ≤
1

1− cλ
∥u∗ −Tλ(u

∗)∥.

In this context, ∥u∗ −Tλ(u
∗)∥ is called Collage distance. If we suppose that

sup
λ∈Λ

cλ < 1,

our interest becomes finding

λ∗ ∈ argminλ∈Λ∥u∗ −Tλ(u
∗)∥.

By modifying the proof of the Collage Theorem, the following more general
result than the Collage Theorem can be obtained under the hypotheses of the
Caccioppoli-Banach Fixed Point Theorem:

Theorem 1. (see [2]) Let (X, ∥ · ∥) be a Banach space, let T : X −→ X and let
{ρn}n≥1 be a sequence of nonnegative real numbers such that the series

∑
n≥1 ρn

is convergent and for all u1, u2 ∈ X and for all n ≥ 1,

∥Tn(u1)−Tn(u2)∥ ≤ ρn∥u1 − u2∥.

Let u• be the fixed point of T and ũ ∈ X be the target. Then there exits n0 such
that ρn0

< 1 and this implies

∥u• − u∗∥ ≤
∑n0−1

i=0 ρi
1− ρn0

∥T(u∗)− u∗∥. (4)

The result can be used, analogously to how we have explained above for
problem (1) when f ∈ C([a, b]2 × R) satisfies a Lipschitz condition with respect
to the last variable. Under this assumption, known f , we have numerically im-
plemented the inverse problem for (1) to determine g with format g(x, t) =
a1+a2x+a3t. Also, we have tested the inverse problem for (2) in the case where
we have collected data of P , we know both, δP and ϕ, and we are interested in
determining an estimate S.

4 Future lines

Future lines of research include the analysis of more general models of macroeco-
nomic geography in which demography and pollution dynamics affect each other.
These problems are modelled with systems of two partial differential equations:
one describing the evolution of pollution over time and space and the other
describing the evolution of the human population.
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1 Introduction

In the literature, some iterative methods with fractional and fractal derivatives
were proposed to find the solution x̄ ∈ R of a function f : I ⊆ R → R, being
f a continuous function in I (see [1, 2, 2–6]). These schemes do not preserve the
theoretical order of convergence in the practice, unlike iterative procedures with
conformable derivatives [8,9]. Our aim is to increase the order of convergence of
conformable methods, introducing higher-order Newton-type schemes with con-
formable derivatives, and design a technique to obtain the conformable version
of any procedure with integer order derivatives.
The left conformable derivative of f : [a,∞) → R of order α ∈ (0, 1], starting
from a, x, a, α ∈ R, a < x, is [10, 11]

(T a
αf)(x) = lim

ε→0

f(x+ ε(x− a)1−α)− f(x)
ε

. (1)

Next, we present a Taylor power series of f by using conformable derivatives
evaluated at a1 [12]:

f(x) = f(a1) +
(T a

αf)(a1)δ1
α

+
(T a

αf)
(2)(a1)δ

2
1

2α2
+R2(x, a1, a), (2)
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where δ1 = Hα − Lα, being H = x− a, and L = a1 − a.
In next section, the design of three higher-order Newton-type schemes is pro-
posed, and a general technique is provided in order to obtain the conformable
version of any classical method. Later, we use this technique to design multi-
point schemes with conformable derivatives, and make the convergence analysis
of all procedures. In Section 3, we talk about the numerical performance of these
methods. Finally, in Section 4 we show the conclusions.

2 Design and convergence analysis of the methods

Let us consider the error equation of conformable Newton method proposed in [8]
up to order four:

ek+1 =

(
C2 +

1− α
2(x̄− a)

)
e2k +

(
2C3 − 2C2

2 +
(α− 1)C2

x̄− a
+

(1− α)(α− 2)

3(x̄− a)2

)
e3k

+

(
3C3 − 7C2C3 + 4C3

2 +
(1− α)(5C2

2 − C3)

2(x̄− a)
+

(2α2 − 5α+ 3)C2

2(x̄− a)2

+
(1− α)(2α2 − 7α+ 7)

8(x̄− a)3

)
e4k +O

(
e5k
)
. (3)

So, we can design the following Newton-type schemes [13]:

xk+1 = a+

(
(xk − a)αk − αk

f(xk)

(T a
αk
f)(xk)

)1/αk

, k = 0, 1, 2, . . . , (4)

being αk = 1 + (xk − a)
f ′′(xk)

f ′(xk)
, k = 0, 1, 2, . . . , where αk is isolated from (3),

and is denoted by NeL3,

xk+1 = ak +

(
(xk − ak)α − α

f(xk)

(T ak
α f)(xk)

)1/α

, k = 0, 1, 2, . . . , (5)

being ak = xk + (1 − α) f
′(xk)

f ′′(xk)
, k = 0, 1, 2, . . . , where ak is isolated from (2),

and is denoted by NeA3, and

xk+1 = ak +

(
(xk − ak)αk − αk

f(xk)

(T ak
αk f)(xk)

)1/αk

, k = 0, 1, 2, . . . , (6)

being αk = 1+
f ′′(xk)

2

f ′′(xk)2 − f ′(xk)f ′′′(xk)
, and ak = xk+

f ′(xk)f
′′(xk)

f ′(xk)f ′′′(xk)− f ′′(xk)2
,

k = 0, 1, 2, . . . , where αk and ak are isolated from (2), and is denoted by NeLA4.
The general technique proposed in [13] states that, for a classical procedure

ϕ(x) = x− f(x)g(x), (7)
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the conformable version is given by

ϕ(x) = a+ ((x− a)α − αf(x)gα(x))1/α . (8)

So, we are able to design some conformable multipoint methods [13]:

1. Traub’s scheme [14,15] in conformable version:

ψ1(x) = a+

(
(ϕ2(x)− a)α − α

f [ϕ1(x)]

(T a
αf)(x)

)1/α

, (9)

where

ϕ1(x) = a+

(
(x− a)α − α f(x)

(T a
αf)(x)

)1/α

, (10)

denoted by TeCO.
2. Chun-Kim’s procedure [15,16] in conformable version:

ψ2(x) = a+

(
(x− a)α − α

2

[
3− (T a

αf)[ϕ1(x)]

(T a
αf)(x)

]
f(x)

(T a
αf)(x)

)1/α

, (11)

denoted by CKeCO.
3. Ostrowski’s method [14,15] in conformable version:

ψ3(x) = a+

(
(ϕ2(x)− a)α − α

[
f(x)

f(x)− 2f [ϕ1(x)]

]
f [ϕ1(x)]

(T a
αf)(x)

)1/α

, (12)

denoted by OeCO.
4. Chun’s scheme [15] in conformable version:

ψ4(x) = a+

(
(ϕ2(x)− a)α − α

[
f(x) + 2f [ϕ2(x)]

f(x)

]
f [ϕ2(x)]

(T a
αf)(x)

)1/α

, (13)

denoted by CeCO.

The next results assure the convergence of the procedures previously proposed:

Theorem 1. Let f : I ⊆ R → R be a continuous function in the interval I
containing the zero x̄ of f(x). Let (T a

αk
f)(x) be the conformable derivative of

f(x) starting from a, with order αk. Let us suppose that (T a
αk
f)(x) is continuous

and not null at x̄. If an initial approximation x0 is sufficiently close to x̄, then
the local order of convergence of the conformable Newton-type scheme (NeL3)

xk+1 = a+

(
(xk − a)αk − αk

f(xk)

(T a
αk
f)(xk)

)1/αk

, k = 0, 1, 2, . . . ,

where

αk = 1 + (xk − a)
f ′′(xk)

f ′(xk)
, k = 0, 1, 2, . . . ,
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is at least 3, and its error equation is

ek+1 =
1

3

(
2C2

2 − 3C3 −
C2

x̄− a

)
e3k +O

(
e4k
)
,

being Cj =
f (j)(x̄)

j!f ′(x̄)
, for j ≥ 2, such that a < xk, ∀k.

Theorem 2. Let f : I ⊆ R → R be a continuous function in the interval I
containing the zero x̄ of f(x). Let (T ak

α f)(x) be the conformable derivative of
f(x) starting from ak, with order α, for any α ∈ (0, 1). Let us suppose that
(T ak

α f)(x) is continuous and not null at x̄. If an initial approximation x0 is
sufficiently close to x̄, then the local order of convergence of the conformable
Newton-type scheme (NeA3)

xk+1 = ak +

(
(xk − ak)α − α

f(xk)

(T ak
α f)(xk)

)1/α

, k = 0, 1, 2, . . . ,

where

ak = xk + (1− α) f
′(xk)

f ′′(xk)
, k = 0, 1, 2, . . . ,

is at least 3 for 0 < α < 1, and the error equation is

ek+1 =

(
2

3

(2− α)C2
2

1− α
− C3

)
e3k +O

(
e4k
)
.

Theorem 3. Let f : I ⊆ R → R be a continuous function in the interval
I containing the zero x̄ of f(x). Let (T ak

αk
f)(x) be the conformable derivative of

f(x) starting from ak, with order αk. Let us suppose that (T
ak
αk
f)(x) is continuous

and not null at x̄. If an initial approximation x0 is sufficiently close to x̄, then the
local order of convergence of the conformable Newton-type procedure (NeLA4)

xk+1 = ak +

(
(xk − ak)αk − αk

f(xk)

(T ak
αk f)(xk)

)1/αk

, k = 0, 1, 2, . . . ,

where

αk = 1 +
f ′′(xk)

2

f ′′(xk)2 − f ′(xk)f ′′′(xk)
, k = 0, 1, 2, . . . ,

and

ak = xk +
f ′(xk)f

′′(xk)

f ′(xk)f ′′′(xk)− f ′′(xk)2
, k = 0, 1, 2, . . . ,

is at least 4, and the error equation is

ek+1 = 2

(
C2C3 − 3

C2
3

C2
+ 2C4

)
e4k +O

(
e5k
)
.
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Theorem 4. Let f : I ⊆ R → R be a continuous function in the interval I
containing the zero x̄ of f(x). Let (T a

αf)(x) be the conformable derivative of f(x)
starting from a, with order α, for any α ∈ (0, 1]. Let us suppose that (T a

αf)(x) is
continuous and not null at x̄. If an initial approximation x0 is sufficiently close
to x̄, then the local order of convergence of the conformable Traub-type procedure
(TeCO)

xk+1 = a+

(
(yk − a)α − α

f(yk)

(T a
αf)(xk)

)1/α

, k = 0, 1, 2, . . . ,

where

yk = a+

(
(xk − a)α − α

f(xk)

(T a
αf)(xk)

)1/α

, k = 0, 1, 2, . . . ,

is at least 3, and the error equation is

ek+1 =

(
2C2

2 + 2
(1− α)C2

x̄− a
+

1

2

(1− α)2

(x̄− a)2

)
e3k +O

(
e4k
)
.

Theorem 5. Let f : I ⊆ R → R be a continuous function in the interval I
containing the zero x̄ of f(x). Let (T a

αf)(x) be the conformable derivative of f(x)
starting from a, with order α, for any α ∈ (0, 1]. Let us suppose that (T a

αf)(x) is
continuous and not null at x̄. If an initial approximation x0 is sufficiently close to
x̄, then the local order of convergence of the conformable Chun-Kim-type scheme
(CKeCO)

xk+1 = a+

(
(xk − a)α −

α

2

[
3− (T a

αf)(yk)

(T a
αf)(xk)

]
f(xk)

(T a
αf)(xk)

)1/α

, k = 0, 1, 2, . . . ,

where

yk = a+

(
(xk − a)α − α

f(xk)

(T a
αf)(xk)

)1/α

, k = 0, 1, 2, . . . ,

is at least 3, and the error equation is

ek+1 =

(
2C2

2 +
1

2
C3 +

5

2

(1− α)C2

x̄− a
+

1

12

(1− α)(7− 8α)

(x̄− a)2

)
e3k +O

(
e4k
)
.

Theorem 6. Let f : I ⊆ R → R be a continuous function in the interval I
containing the zero x̄ of f(x). Let (T a

αf)(x) be the conformable derivative of f(x)
starting from a, with order α, for any α ∈ (0, 1]. Let us suppose that (T a

αf)(x)
is continuous and not null at x̄. If an initial approximation x0 is sufficiently
close to x̄, then the local order of convergence of the conformable Ostrowski-type
method (OeCO)

xk+1 = a+

(
(yk − a)α − α

[
f(xk)

f(xk)− 2f(yk)

]
f(yk)

(T a
αf)(xk)

)1/α

, k = 0, 1, 2, . . . ,
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where

yk = a+

(
(xk − a)α − α

f(xk)

(T a
αf)(xk)

)1/α

, k = 0, 1, 2, . . . ,

is at least 4, and the error equation is

ek+1 =

(
C3

2 − C2C3 +
1

2

(1− α)(C2
2 − C3)

x̄− a
+

1

12

(1− α2)2C2

(x̄− a)2

+
1

24

(1− α)(1− α2)

(x̄− a)3

)
e4k +O

(
e5k
)
.

Theorem 7. Let f : I ⊆ R → R be a continuous function in the interval I
containing the zero x̄ of f(x). Let (T a

αf)(x) be the conformable derivative of f(x)
starting from a, with order α, for any α ∈ (0, 1]. Let us suppose that (T a

αf)(x) is
continuous and not null at x̄. If an initial approximation x0 is sufficiently close
to x̄, then the local order of convergence of the conformable Chun-type method
(CeCO)

xk+1 = a+

(
(yk − a)α − α

[
f(xk) + 2f(yk)

f(xk)

]
f(yk)

(T a
αf)(xk)

)1/α

, k = 0, 1, 2, . . . ,

where

yk = a+

(
(xk − a)α − α

f(xk)

(T a
αf)(xk)

)1/α

, k = 0, 1, 2, . . . ,

is at least 4, and the error equation is

ek+1 =

(
5C3

2 − C2C3 +
(1− α)(13C2

2 − C3)

2(x̄− a)
+

(24(1− α)2 + (1− α)(13− 11α))C2

12(x̄− a)2

+
(1− α)2(13− 11α)

24(x̄− a)3

)
e4k +O

(
e5k
)
.

The numerical performance of given procedures is dicussed in next section.

3 Numerical results

We used Matlab R2020a with double precision arithmetics, |xk+1 − xk| < 10−8

or |f(xk+1)| < 10−8 as stopping criterium, and a maximum of 500 iterations.
We used the Approximated Computational Order of Convergence (ρ) [17]:

ρ =
ln(|xk+1 − xk|/|xk − xk−1|)

ln(|xk − xk−1|/|xk−1 − xk−2|)
, k = 2, 3, 4, . . .

We compare the results obtained with each mathod, including the classical ver-
sion of conformable multipoint schemes, and we also compare our procedures
with the Toolbox fsolve from Matlab. In methods NeL3, TeCO, CKeCO, OeCO
and CeCO we fix a = −10, because a is not calculated in each iteration.
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Table 1: Results of one-point methods and fsolve for f(x), with initial estimate
x0 = 1

NeA3 method

α x̄ |f(xk+1)| |xk+1 − xk| iter ρ

1 x̄4 4.36 · 10−11 6.85 · 10−7 13 2.01

0.9 x̄4 3.55 · 10−15 1.02 · 10−9 7 2.92

0.8 x̄3 3.91 · 10−13 3.58 · 10−8 15 2.89

0.7 x̄6 5.33 · 10−15 5.35 · 10−10 38 3.01

0.6 x̄4 1.71 · 10−13 8.73 · 10−6 22 3.37

0.5 x̄3 6.18 · 10−13 6.70 · 10−10 54 2.96

0.4 x̄3 3.91 · 10−13 1.69 · 10−7 31 2.91

0.3 x̄4 1.03 · 10−9 1.88 · 10−4 19 3.57

0.2 x̄3 4.02 · 10−9 8.18 · 10−5 35 2.81

0.1 x̄4 9.07 · 10−10 1.94 · 10−4 168 3.53

NeL3 method

αk x̄ |f(xk+1)| |xk+1 − xk| iter ρ

- x̄3 4.13 · 10−13 4.10 · 10−6 11 2.89

NeLA4 method

αk x̄ |f(xk+1)| |xk+1 − xk| iter ρ

- x̄1 6.53 · 10−15 1.51 · 10−7 3 4.00

fsolve

- x̄ |f(xk+1)| |xk+1 − xk| iter ρ

- - - - - -

Our test function is f1(x) = −12.84x6−25.6x5+16.55x4−2.21x3+26.71x2−
4.29x − 15.21, whose real and complex roots are x̄1 = 0.82366 + 0.24769i,
x̄2 = 0.82366−0.24769i, x̄3 = −2.62297, x̄4 = −0.584, x̄5 = −0.21705+0.99911i
and x̄6 = −0.21705− 0.99911i.
In Table 1, NeA3 requires less or more iterations than classical Newton method,
and ρ is three. NeLA3 and NeL3 require less iterations than classical Newton’s
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Table 2: Results of multipoint methods for f(x), with initial estimate x0 = 1

NeA3 method NeA3 method

α x̄ |f(xk+1)| |xk+1 − xk| iter ρ x̄ |f(xk+1)| |xk+1 − xk| iter ρ

1 x̄3 6.18 · 10−13 4.49 · 10−7 115 2.89 - - - > 500 -
0.9 x̄4 4.04 · 10−9 2.43 · 10−4 69 2.80 - - - > 500 -
0.8 x̄4 5.30 · 10−11 5.73 · 10−5 61 2.83 x̄4 9.95 · 10−14 9.91 · 10−10 190 3.00
0.7 x̄2 1.16 · 10−13 3.57 · 10−6 329 0.00 - - - > 500 -
0.6 x̄4 1.07 · 10−14 1.12 · 10−6 119 2.90 - - - > 500 -
0.5 x̄4 3.24 · 10−10 1.05 · 10−4 213 2.82 - - - > 500 -
0.4 x̄4 1.17 · 10−13 7.31 · 10−9 104 2.95 x̄5 1.41 · 10−11 1.88 · 10−5 484 2.80
0.3 - - - > 500 - x̄4 2.11 · 10−13 1.11 · 10−5 490 0.00
0.2 - - - > 500 - - - - > 500 -
0.1 - - - > 500 - - - - - -

OeCO method CeCO method

α x̄ |f(xk+1)| |xk+1 − xk| iter ρ x̄ |f(xk+1)| |xk+1 − xk| iter ρ

1 x̄4 1.07 · 10−14 2.77 · 10−5 3 2.41 x̄3 6.18 · 10−13 4.76 · 10−9 47 3.73
0.9 x̄4 9.95 · 10−14 1.97 · 10−5 3 2.43 x̄3 3.11 · 10−10 2.76 · 10−4 75 3.21
0.8 x̄4 9.95 · 10−14 1.36 · 10−5 3 2.44 x̄3 6.18 · 10−13 9.77 · 10−5 66 3.28
0.7 x̄4 1.17 · 10−13 9.14 · 10−6 3 2.46 x̄3 2.26 · 10−12 1.89 · 10−10 87 3.81
0.6 x̄4 9.95 · 10−14 5.93 · 10−6 3 2.48 x̄3 1.81 · 10−10 2.42 · 10−4 108 3.22
0.5 x̄4 1.17 · 10−13 3.68 · 10−6 3 2.49 x̄3 4.92 · 10−11 1.76 · 10−4 87 3.24
0.4 x̄4 1.17 · 10−13 2.16 · 10−6 3 2.51 x̄4 1.17 · 10−13 1.08 · 10−7 212 3.68
0.3 x̄4 1.07 · 10−14 1.18 · 10−6 3 2.53 x̄4 1.07 · 10−14 1.75 · 10−7 53 3.67
0.2 x̄4 2.24 · 10−13 5.90 · 10−7 3 2.55 x̄4 2.24 · 10−13 7.13 · 10−7 45 3.61
0.1 x̄4 4.21 · 10−13 2.58 · 10−7 3 2.57 - - - - -

method, and the computational order of convergence is greater. We can note
that fsolve does not find solution with this initial estimate.
In Table 2 we can observe a similar behavior0. We can see that TeCO can get
a solution in less iterations than classical Traub’s procedure, and the compu-
tational order of convergence is three. We can see that classical Chun-Kim’s
methos does not encounter any solution, unlike CKeCO. OeCO and CeCO have
a similar behavior compared to their classical partners.
Now, we analyze the dependence on initial estimates of these methods. For
this aim, we use convergence planes [18]. These planes are constructed with
a 400 × 400 grid; we consider initial estimate in the horizontal axis, and the
value of α ∈ (0, 1] in the vertical axis. Each solution is represented by a distinct
color. It is painted in black when no solution has been is found in 500 iterations,
and the tolerance is 10−3. The percentage of converging pairs (x0, α) is also cal-
culated.
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In Figure 1, we can note that NeA3 and OeCO get around 100% of convergence,
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(a) NeA3, 99.76% of convergence
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(b) TeCO, 94.63% of convergence
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(c) CKeCO, 76.76% of convergence
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(d) OeCO, 99.46% of convergence
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(e) CeCO, 94.04% of convergence

Fig. 1: Convergence planes for f(x)

whereas TeCO and CeCO obtain around 94% of convergence, and CKeCO is
around 77% of convergence. Notice that all roots are obtained in all planes.
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4 Conclusion

In this work, conformable higher-order Newton-type methods were designed.
These schemes improved the convergence of Newton’s procedure with integer
derivative. Also, it has been designed a general technique in order to get the
conformable version of any classical method. The numerical experiments support
the theory, obtaining the expected order of convergence in each case, and the
dependence on initial estimates was visualized by means of convergence planes.
These schemes can find solution when the classical partners fail, and can con-
verge in fewer iterations. They can get complex roots with real initial estimates,
and it is possible to obtain distinct roots by choosing distinct values of the frac-
tional order α. Also, these procedures have shown good stability, because of the
wideness of basins of attraction of the roots, and because all the were found in
all planes.
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Abstract. In this work, doubly stochastic combined matrices are con-
sidered. These matrices have applications in several areas such as Statis-
tic or Control Theory in order to determine the behaviour of the pro-
cesses. In these areas, the matrices are known as Relative Gain Array and
they are characterized by having a small size equal to 2, 3 or 4. In partic-
ular, this work answers two questions on combined matrices. The first is
the existence of a real matrix of order 3 such that its combined matrix is
a given doubly stochastic matrix. The second is the construction of this
real matrix. Finally, we apply these results to doubly stochastic Hankel
matrices of order 3.

Keywords: combined matrix, doubly stochastic matrix, nonnegative
matrix, Hankel matrix

1 Introduction

A real matrix A = (aij) of order n is a doubly stochastic matrix if its entries are
nonnegative numbers and the sum of its entries of any row or column is equal
to 1, that is 0 ≤ aij ≤ 1, ∀i, j = 1, 2, . . . , n,

∑n
i=1 uij = 1, ∀j = 1, 2, . . . , n

and
∑n

j=1 uij = 1, ∀i = 1, 2, . . . , n. These matrices are useful in Statistic and
Probability.

A combined matrix of a nonsingular matrix A = (aij) is the matrix C(A) =
(cij) = A ◦ A−T where ◦ means the Hadamard (entrywise) product, and A−T

means the inverse transpose, (A−1)T , of A. These matrices are called Relative
Gain Array (RGA) in Control Theory and they are used to determine the best
input-output pairing for multivariable process control systems, see [1–3].

Several authors have studied combined matrices of nonsingular matrices. For
example, problems of characterization of a combined matrix when the elements
of its main diagonal are known are studied in [4, 5], the structure of matrices
whose combined matrix has a given structure is obtained in [6, 7], and some
algorithms for constructing doubly stochastic matrices are considered in [8].

Usually, the RGA matrices used in Control Theory have a small size, being
their size equal to 2, 3 or 4. There are some results on matrices of order 3 given
in [4, 9, 10].

In this work we consider real matrices of order 3 and our aim is answer the
following questions: If we have a doubly stochastic matrix of order 3, is there
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a real matrix such that its combined matrix is this doubly stochastic matrix?
Moreover, if it exists, what is its structure?

2 Results

Firstly, we give the following properties of combined matrices that we use to
answer the questions given in the Introduction, see [11].

Lemma 1. The combined matrix C(A) = (cij) of a nonsingular matrix A =
(aij) satisfies

(a) If D1 and D2 are two nonsingular diagonal matrices then C(A) = C(D1AD2).

(b) If P and Q are two permutation matrices and G is any triangular matrix
then

(b.1) C(PAQ) = PC(A)Q.

(b.2) C(PGQ) = PC(G)Q = PQ.

(b.3) C(PQPT ) = I.

(c) If cij ̸= 0 then aij ̸= 0, ∀ i, j.
(d) The sum of the entries of any row or column of C(A) is 1.

(e) C(A−T ) = C(A).

We answer the first question when the doubly stochastic matrix has not zero
entries in its first row and its first column.

Theorem 1. Let U = (uij) be a doubly stochastic matrix of order 3 without
zero entries in its first row and its first column. Then, there exists a nonsingular
matrix A = (aij), such that C(A) = U , if and only if the polynomial

P (x) = u11x
2 + (u22 − u13u31 − u33u11)x+ u33u13u31 (1)

has at least a real root different from
−u13u31
u21 + u31

·

Note that if P (x) has a unique root, there exists a real matrix A such that
C(A) = U . By Lemma 1 any other matrix such that its combined matrix is U
belongs to the set

FU (A) = {A, A−T , D̃1AD̃2, D̃1A
−T D̃2}, (2)

where D̃1 and D̃2 are nonsingular diagonal matrices. If P(x) has two roots, there
exist two real matrices Ai, i = 1, 2, with the same combined matrix U . In this
case any other matrix such that its combined is U belongs to one of the sets
FU (A1) or FU (A2).

The following example clarifies the above result.
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Example 1. Consider the doubly stochastic matrix

U =


0.5000 0.4375 0.0625

0.4375 0.1250 0.4375

0.0625 0.4375 0.5000

 .

The second degree polynomial given in (1) is

P (x) = u11x
2 + (u22 − u13u31 − u33u11)x+ u33u13u31 = 0.5x2 − 0.128x+ 0.002,

with positive discriminant,

∆ = (u22 − u13u31 − u33u11)2 − 4u11u33u13u31 = 0.0127 > 0.

Therefore, it has two real roots x1 = 0.2416 and x2 = 0.0162, both different from
−u13u31
u21 + u31

= −0.0078. According to Theorem 1, for each root xi, there exists a

nonsingular matrix Ai such that C(Ai) = U , i = 1, 2.

The following example is taken from [7]. In that paper, the authors could not
obtain a matrix A such that its combined matrix was U , and we reach the same
conclusion by applying Theorem 1.

Example 2. Consider the matrix given in [7],

U =


1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

 . (3)

The polynomial in x given in (1) is

P (x) =
1

3
x2 +

1

9
x+

1

27
,

whose discriminant is negative

∆ = (u22 − u13u31 − u33u11)2 − 4u11u33u13u31 = −1/27 < 0.

According to Theorem 1, there is no matrix A whose combined matrix is U ,
because the polynomial P (x) does not have real roots.

Now, we answer the second question posed in this work. Suppose that we
have a doubly stochastic matrix U such that there exists a matrix A whose
combined matrix is U . The following theorem shows how to obtain the matrix
A from a diagonally equivalent matrix T .
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Theorem 2. Let U = (uij) be a doubly stochastic matrix of order 3 without zero
entries in its first row and its first column. If there exists a nonsingular matrix
A such that C(A) = U , then the matrix A is given by A = D1TD2, where D1 and
D2 are nonsingular diagonal matrices and the matrix T diagonally equivalent to
A, is given by

T =
1

d


d d d

d u11s33 − u13u31 u11s33 + u31(1− u13)

d u11s33 + u13(1− u31) u11s33 − u13u31 + u13 − u21

 ,

where d = −(u21 + u31)s33 − u13u31 and

S = (sij) = T−1 =


u11 u21 u31

u12 u13 − u21 + s33 −u31 − s33
u13 −u13 − s33 s33

 ,

with s33 a real root of the polynomial P (x) given in (1) different from
−u13u31
u21 + u31

.

The following example clarifies the above result.

Example 3. Consider the doubly stochastic matrix given in Example 1. For each
root xi, i = 1, 2, we obtain the matrices Si and Ti, such that C(Ti) = U . Using,
for example, D1 = diag (1, 2, 3) and D2 = diag (4, 2, 1), we calculate the matrices
Ai = D1TiD2 which satisfy that C(Ai) = U .

• For s33 = x1 = 0.2416, we have

S1 =


0.5000 0.4375 0.0625

0.4375 −0.1334 −0.3041

0.0625 −0.3041 0.2416

 , T1 = S−1
1 =


1 1 1

1 −0.9374 −1.4384

1 −1.4384 2.0691

 ,

and

A1 = D1T1D2 =


4.0000 2.0000 1.0000

8.0000 −3.7496 −2.8768

12.0000 −8.6304 6.2073

 .

• For s33 = x2 = 0.0162 we have

S2 =


0.5000 0.4375 0.0625

0.4375 −0.3588 −0.0787

0.0625 −0.0787 0.0162

 , T2 = S−1
2 =


1 1 1

1 −0.3493 −5.5549

1 −5.5549 30.8844

 ,
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and

A2 = D1T2D2 =


4.0000 2.0000 1.0000

8.0000 −1.3972 −11.1098

12.0000 −33.3295 92.6533

 .

Note that any other matrix such that its combined is U belongs to one of the
sets FU (A1) or FU (A2) given in (2).

Note that, if U is a symmetric matrix by construction the matrices Si and Ti
are also symmetric. Moreover ifD1 = D2 then the matrices Ai will be symmetric,
but if D1 ̸= D2 then they will not be symmetric.

3 Application to Hankel matrices

An easy way to construct doubly stochastic matrices of order n is from nonnega-
tive Hankel matrices of the same order. We recall that a Hankel matrix, denoted
by H = (hij) is a square matrix whose values are constant along the ascending
diagonals, i.e., whose entries satisfy the relation hij = hi−1,j+1 for i = 2, 3, . . . , n
and j = 1, 2, . . . , n− 1. In particular, the positive Hankel matrix of order 3 has
the following form

H =


a b c

b c a

c a b

 , ∀a, b, c > 0.

Since the sum of the entries of its rows and its columns is the same, a+ b+ c, we
construct a doubly stochastic matrix multiplying the matrix H by the inverse of
the sum a+ b+ c, i.e.

U =
1

a+ b+ c


a b c

b c a

c a b

 =



a

a+ b+ c

b

a+ b+ c

c

a+ b+ c

b

a+ b+ c

c

a+ b+ c

a

a+ b+ c

c

a+ b+ c

a

a+ b+ c

b

a+ b+ c


.

The matrix U is the doubly stochastic matrix corresponding to the Hankel
matrix H. Note that U is also a Hankel matrix and therefore it is a symmetric
matrix. If we permute rows or columns of this matrix then we obtain a nonsym-
metric doubly stochastic matrix. Thus, we conclude that we obtain symmetric
or nonsymmetric doubly stochastic matrices from nonnegative Hankel matrices.

Now, we consider a doubly stochastic Hankel matrix U obtained from a
positive Hankel matrix H. We pose the following question: If we have a matrix
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U of order 3, is there a real matrix A such that its combined matrix is U? The
following example shows that the answer is negative.

Example 4. Consider the real numbers 1, 2 and 3 and construct the following
Hankel matrix H and its corresponding doubly stochastic Hankel matrix U ,

H =


2 1 3

1 3 2

3 2 1

 , U =
1

6
H =


1/3 1/6 1/2

1/6 1/2 1/3

1/2 1/3 1/6

 .

The polynomial P (x) given in (1) associated with U is

P (x) =
1

3
x2 +

1

18
x+

1

24
,

whose discriminant is negative

∆ = (u22 − u13u31 − u33u11)2 − 4u11u33u13u31 = −0.0177469 < 0.

From Theorem 1, there is no a real matrix A whose combined matrix is U .

Note that, the matrix given in (3) is a doubly stochastic matrix constructed
from the Hankel matrix of order 3 with all its entries equal to one.

The negative answer to the previous question leads us to another question:
Does the distribution of the numbers on the main diagonal of a Hankel matrix
H influence the fact that the discriminant of the corresponding polynomial P (x)
given in (1) is positive or negative? The answer is shown in the following result.

Proposition 1. Let H = (hij) be a Hankel matrix of order 3 and let U be its
corresponding doubly stochastic Hankel matrix. The sign of the discriminant of
the polynomial P (x), associated with U , is independent of the distribution of the
entries hii, i = 1, 2, 3.

Proof. Let H = (hij) be a Hankel matrix of order 3 and let U be the correspond-
ing doubly stochastic Hankel matrix. To change the order of the entries on the
main diagonal of H is equivalent to make a permutation similarity in rows and
columns of H and therefore in U . By Lemma 1, if there exists a matrix A such
that C(A) = U , then any matrix similar by permutation to A satisfies that its
combined matrix is the matrix obtained from the same permutation similarity
over U . So, the sign of the discriminant of the polynomial P (x), associated with
U , is independent of the distribution of the entries hii, i = 1, 2, 3. □

Consider a set of three positive real numbers {a, b, c}. We construct the
positive Hankel matrix of order 3 with these numbers, and the corresponding
doubly stochastic Hankel matrix U . Is there any condition on the set {a, b, c}
such that a nonsingular matrix A with C(A) = U can be obtained? We answer
this question in the following result.
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Proposition 2. Let a, b and c positive real numbers, let H = (bij) be a Hankel
matrix of order 3 and let U be the corresponding doubly stochastic Hankel matrix.
Then, there exists a nonsingular matrix A = (aij), such that C(A) = U if:

(i) a = b ̸= c, with c ≤ a/4.

(ii) a ̸= b and c ∈

0, ab(√
a+
√
b
)2
 ∪

 ab(√
a−
√
b
)2 , +∞

.
Proof. We consider three positive real numbers a, b and c. Regardless of the
distribution, if they are on the main diagonal of a Hankel matrix H, the dis-
criminant of the polynomial P (x) given in (1) is

△ =
a2b(b− 2c) + b2c(c− 2a) + c2a(a− 2b)

(a+ b+ c)4
.

So, in order to ensure △ ≥ 0, a, b and c must satisfy the following inequality,

a2b(b− 2c) + b2c(c− 2a) + c2a(a− 2b) ≥ 0. (4)

If a and b are known positive real numbers, to obtain the values for c that
equation (4) is satisfied, we distinguish the following cases:

(1) a = b
(1.1) a = b = c

In this case the Hankel matrix H and the corresponding doubly stochas-
tic Hankel matrix U are

H =


a a a

a a a

a a a

 , U =
1

3a
H =


1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

 .

As we have seen in Example 3, for this matrix U there is no matrix A
whose combined matrix is U .

(1.2) a = b ̸= c
Now, we have that

a2b(b− 2c) + b2c(c− 2a) + c2a(a− 2b) = a3(a− 4c).

Therefore,

△ ≥ 0 ⇔ c ≤ a

4
.

If c =
a

4
then we obtain a nonsingular matrix A, such that C(A) = U .

If c <
a

4
we obtain two nonsingular matrices Ai, such that C(Ai) = U ,

i = 1, 2.
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(2) a ̸= b
Equation (4) can be written in the following form

(a2 − 2ab+ b2)c2 − (2a2b+ 2ab2)c+ a2b2 ≥ 0.

This inequality is satisfied if

c ∈

0, ab(√
a+
√
b
)2
 ∪

 ab(√
a−
√
b
)2 , +∞

 .
If c =

ab(√
a+
√
b
)2 or c =

ab(√
a−
√
b
)2 then there exists a matrix A such

that C(A) = U . In other case, there exist two nonsingular matrices Ai, such
that C(Ai) = U , i = 1, 2.

We finalize this work with the following example.

Example 5.

• Consider the real numbers a = b = 8 and c = 1. As a = b and c ≤ a/4 by
Proposition 2, there exists a matrix A such that C(A) = U . Without loss
of generality, we assume that the Hankel matrix H and the corresponding
doubly stochastic Hankel matrix U are

H =


8 8 1

8 1 8

1 8 8

 , U =
1

17
H =


0.4706 0.4706 0.0588

0.4706 0.0588 0.4706

0.0588 0.4706 0.4706

 .

For U the polynomial P (x) given in (1) is

P (x) = 0.4706x2 − 0.1661x+ 0.0016

whose discriminant is△ = 0.0245 > 0 and the two real roots are x1 = 0.3428
and x2 = 0.0101. Applying Theorem 2 we have

x1 = 0.3428 → T1 =


1 1 1

1 −0.8536 −1.1716

1 −1.1716 1.3726

 and A1 = D1T1D2

x2 = 0.0101 → T2 =


1 1 1

1 −0.1464 −6.8284

1 −6.8284 46.6274

 and A2 = D1T2D2,
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where D1 and D2 are arbitrary nonsingular diagonal matrices.

If the distribution on the main diagonal of a, b and c is different, i.e. H̃ =
PHP−1, where P is a permutation matrix, then the matrices whose com-
bined matrix is U are Ã1 = PA1P

−1 and Ã2 = PA2P
−1.

• Now, consider a = 9 and b = 4. If c ∈]0, 1.44] ∪ [36, +∞[ by Proposition 2,
the doubly stochastic matrix U satisfies that there exists a matrix A such
that C(A) = U .

Suppose that c = 36, then the Hankel matrix H and the corresponding
doubly stochastic Hankel matrix U are

H =


9 4 36

4 36 9

36 9 4

 , U =
1

17
H =


0.1837 0.0816 0.7347

0.0816 0.7347 0.1837

0.7347 0.1837 0.0816

 .

For U the polynomial P (x) given in (1) is

P (x) = 0.1837x2 + 0.1799x+ 0.0441

whose discriminant is △ = 0 and the unique real root of P (x) is x1 =
−0.4898. Applying Theorem 2 we have

T =


1 1 1

1 4.5000 −0.7500

1 −0.7500 −0.1667

 and A = D1TD2

where D1 and D2 are arbitrary nonsingular diagonal matrices. If the dis-
tribution of the main diagonal is different, we obtain Ã as in the previous
case.

4 Conclusions

In this work we consider a doubly stochastic matrix U of order 3, without zero
entries in its first row and its first column, and we present a result to assure that
there exists a real matrix A of order 3 such that its combined matrix is U . In
addition, we give a method to obtain A and the set of all real matrices such that
their combined matrix is also U . We apply these results to doubly stochastic
matrices obtained from Hankel matrices of order 3.
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4. Bru,R., Gassó, M.-T., Giménez, I., Santana, M.: Diagonal entries of the combined
matrix of a totally negative matrix. Linear and Multilinear Algebra 65(10):1971–
1984 (2017). doi.org/10.1080/03081087.2016.1261079

5. Fiedler, M.,Markham, T.-L.: Combined matrices in special classes of matrices.
Linear Algebra and its Applications 435:1945–1955 (2011). doi.org/10.1016/j.laa.
2011.03.054
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Òscar Garibo-i-Orts1, Andrei Velichko2, and J. Alberto Conejero1

1 Instituto Univrsitario de Matemática Pura y Aplicada.
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Abstract. Artificial intelligence methods have been recently used for
estimating the predictability and complexity of a time series through an
entropy computation. This approach overcomes the parametric depen-
dence of these methods. Time series can also be represented through the
computation of horizontal visibility graphs. In this work, we show how
a LogNNet neural network model also provides reliable results when fed
with the sequence of degrees of the visibility graph instead of the time
series itself.

Keywords: entropy; time series; neural networks; logistic equation; LogNNet;
NNetEN; classification; natural visibility graphs; horizontal visibility graphs

1 Introduction

Being able to measure the complexity of time series helps to design and control
nonlinear systems. There are several methods, both mathematical and statistical,
which help to measure the degree of complexity of data represented as time
series. Among other methods, we have the Kolmogorov complexity measure [14],
the C1/C2 complexity measure [14] or the permutation entropy [15]. Recently,
Velichko proposed the use of a LogNNet neural network for IoT applications
with limited available memory [6,10]. This is a feedforward neural network that
uses filters based on logistic function and a reservoir inspired by recurrent neural
networks. This enables to transform a signal into a high-dimensional space. Its
efficiency was validated on the MNIST-10 data set [8]. The LogNNet is The
extraction of features and the use of recurrent neural networks are very effective
for processing physical properties of signals, as is the case of the combination of
convolutional networks with Long Short Memory networks [3] or transformers [2]
for analyzing anomalous diffusion. LogNNet is very competitive because the low
level of memory requirements, since it consists of a weights multiplication layer
and a dense layer (multilayer perceptron) to compute the output. Its efficiency
was outperformed when replacing the the logistic map by the semi-linear a Henon
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type discrete map [5]. As a matter of fact, they showed that the classification
performance is proportional to the entropy of the time series and has a stronger
correlation than the Lyapunov exponent of the time series used to feed the
reservoir. Because of this property, Velichko and Heidari showed that LogNNet
architecture permits estimating the entropy of a time series just by looking at
the classification accuracy when we feed the reservoir with the time series values.
Such an approach has the advantage over other methods: it does not depend on
the choice of parameters.

Visibility graphs were introduced in [7] as a simple and fast computational
way to represent a time series as a graph. Visibility graphs inherit the periodic
and chaotic properties of the logistic equation [9]. For example, periodic series
result in regular graphs, random series in random graphs, and fractal series in
scale-free graphs. A natural visibility graph (NVG) is constructed as follows. Let
{(ti, yi)}i∈I a time series indexed on I, where the series at time ti takes the
value yi. We associate a node to each pair (ti, yi) to convert this series into a
graph. Given two nodes (ta, ya) and (tb, yb), we consider that these two points
have visibility and therefore, they are connected by an edge if any other pair
(tc, yc) with a < c < b satisfies

yc < yb + (ya − yb)
tb − tc
tb − ta

. (1)

Horizontal Visibility Graphs (HVG) were introduced in [9] to simplify the
previously described NVG. As with the NVGs, for computing the HVG, each
value in the time series is assigned a node in the resulting graph. Two nodes
(ta, ya) and (tb, yb) in this graph result in being connected if a horizontal line
can be drawn connecting these two points without intersecting any intermediate
value that is, if ya, yb > yc for all a < c < b, see the examples in Figure 1.

Fig. 1: Ilustrative example of the NVG representation for a time serie (left) and
the HVG representation for the same time serie (right).

In this work, we reproduce the work in [12], but instead of feeding the LogN-
Net weight matrix with the logistic map time series, we will use the HVG de-
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grees representation of a logistic time series, which implies that the resulting
time series does not consist of real numbers, but only of integer numbers. We
will analyze how accurate is to look at the classification accuracy to estimate
the entropy of the HVG degree sequence, which should resemble the entropy of
the given logistic time series. This paper is organized as follows: In Section 2, we
introduce the methods we have used, while in Section 3 we explain the results
we obtained, and finally, in Section 4 we state the conclusions, and we outline
some ideas for future works.

2 Methodology

We generate trajectories from the logistic map xn+1 = rxn(1 − xn) for r ∈
[3.4, 4.0] with step size 0.01 and initial condition x0 = 0.3 Then we compute the
degrees of the HVG associated to each trajectory. The degree sequences will be
the ones whose entropy will be analyzed using the LogNNET architecture.

As we have said, the LogNNET architecture permits us to estimate the en-
tropy of a time series when we use it to fill the reservoir of the network just
by looking at the classification accuracy on the MNIST-10 data set [12]. The
MNIST-10 data set consists of images depicting hand-written digits from 0 to 9
and has consistently been used to benchmark image classification methods. In
Figure 2, we show a sample of the images in MNIST-10.

Fig. 2: Sample images from the MNIST data set extracted from Wikipedia https:
//en.wikipedia.org/wiki/MNIST database.

The LogNNet architecture has two main parts: the model reservoir and the
output layer, see Figure 3. The model reservoir changes the space of representa-
tion of the input images, while the output layer learns the weights matrix W2 to
fit the true labels. In our case, the weights matrix W1 in the reservoir is loaded
with the HVG degrees of logistic time series, whose entropy we want to estimate.

https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/MNIST_database
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Fig. 3: LogNNet model arquitecture extracted from [12].

The input images are converted into the input vectors Yn while the HVG
time series are used to fill theW1 weights matrix. In our case, the matrix is filled
with HVG sequences. As described in [12], the usage of the LogNNet follows the
algorithm shown in Algorithm 1:

Algorithm 1 LogNNet algorithm

1. Load an HVG degree sequence and denote it as Xn.
2. Load MNIST images data set and transform the images into input vectors
Y .
3. The output layer’s weights vector W2 is initialized to a constant value for
all its elements of 0.5 for the sake of reproducibility when computing entropy.
4. The reservoir weights matrix W1 is initialized using Xn.
5. Compute the coefficients for normalization.
6. Set the number of training epochs.
7. Train the W2 weights by iterating over the input data for the selected
number of epochs.
8. Evaluate the trained model with the MNIST-10 test data set.
9. Compute the model’s accuracy.

The accuracy is considered the entropy measure and denoted by NNetEn,
or entropy inferred by the LogNNet architecture. The matrix W1 affects the
resulting representation of the input vectors since the input vector representation
is a matrix resulting from multiplying the input vector Y by the W1 weights
matrix. In this work, we consider two methods to fill the LogNNet reservoir, and
we will evaluate how both methods perform.

• Method 1: The W1 matrix is filled row by row with the HVG degrees time
series,
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• Method 2: TheW1 matrix is filled column by column with the HVG degrees
time series as proposed in [12].

It is worth mentioning that for dealing with MNIST data set, the reservoir
matrix W1 has 25 rows and 785 columns. Consequently, 19,625 elements are
needed in order to fill the W1 matrix. Nevertheless, the length of a given time
series selected to fill the W1 matrix (becoming the filters of the neural network)
may have more or fewer elements than this amount. In order to cope with this,
in [12], it is recommended that given a time series of length N , to keep the
last 19,625 elements in the time series if N > 19, 625. If the time series length
N < 19, 625, Method 2 must be selected to fill the W1 matrix (column-wise).
TheW1 matrix is then fed column-wise until the number of elements in the time
series is exhausted, then the column being filled is completed with zeros, and
the time series is used again from the beginning to fill the next column. Should
the time series be used up again before the W1 matrix is complete, the same
operation should be repeated until it is completely filled. In Figure 4, we depict
an example for clarification.

Fig. 4: Structure of the filling method used when the length of the time series
N < 16, 625 (a) and an toy example in a simple example with didactic goal in
which W1 has size (4x7) and the time series used to fill it has length 9. Figure
extracted from [12].

In addition to entropy, we calculate the learning inertia (LIEp1/Ep2
) as in-

troduced in [12]. Learning inertia reflects how fast the entropy inferred by the
LogNNet (NNetEN) converges to the plateau with respect to the number of
training epochs and is calculated as follows:

LI(Ep1/Ep2) =
NNetEn(epochEp2)−NNetEn(epochEp1)

NNetEn(epochEp2)
, (2)

being Ep1 < Ep2 two learning epochs used to infer the entropy.

3 Results

First, we use Method 1 to fill the reservoir matrix. We train the LogNNet network
for 1 and 20 epochs and compute the resulting entropy. In Figure 5, we can
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see that after 20 epochs the model’s best performance remains below 60% of
accuracy, or in other words, the entropy is below 0.60. As commented before,
the best entropy results are achieved when the reservoir matrix W1 is fed with
HVG degrees time series from the logistic map’s chaotic regions.

Fig. 5: NNetEn (entropy) inferred by the LogNNet model when the W1 reservoir
matrix is fed using Method 1 (row-wise).

Then, we used Method2 and consistently achieved better entropy values.
LogNNet was trained for 1, 20, and 100 epochs in this case , as shown in Fig-
ure 6(a) and (c). Again, the best entropy values result from using HVG degrees
time series from the chaotic regions of the logistic map. Since the resulting en-
tropy at 20 epochs was better than the one obtained with the same number of
epochs using Method 1 (slightly above 0.65 using Method 2 vs. below 0.60 using
Method 1), we trained the LogNNet for 100 epochs to check if increasing the
learning epochs increased the associated entropy. The learning inertia between
both epochs is shown in Figure 6(b). We also see that the learning inertia de-
creases in the regions were NNetEn is low. We also see that abrupt changes in
the accuracy result into sharp changes of the NNetEn.

We concluded that training for more epochs increased the accuracy (or en-
tropy) to values above 0.70 but multiplying the training time by 5. Additionally,
if compared to the results obtained for the logistic map in [12] for 100 epochs,
we can not appreciate significative differences in the performance with respect
to entropy estimation either the logistic map time series or the HVG degrees
time series are used to feed the reservoir matrix.

4 Conclusions

In this work, we have shown that using the HVG degrees time series obtained
from the logistic map to feed the W1 matrix in the reservoir of the LogNNet to
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Fig. 6: (a) NNetEn (entropy) inferred by the LogNNet model when theW1 reser-
voir matrix is fed with Method 2 (column-wise) after 1, 20, and 100 epochs, (b)
the learning inertia LI(Ep1/Ep2), and (c) NNetEn achieved by the LogNNet
after 20 epochs.

infer the entropy and using the logistic map itself achieves a similar performance
when inferring the entropy. Moreover, both time series (logistic map and HVG
degrees from the logistic map) result in the best entropy in the range of values
of the r parameter from the logistic map for the zone with chaotic behavior.

As future research lines, it would be interesting to study other structural
features obtained from chaotic time series and in the case of short sequences,
what is the best way to fill the reservoir matrix, beyond these two methods
[4]. These methods are available on a Python package [11]. Besides, it will be
interesting to explore the behavior of other chaotic maps, as it is the case of the
fractional chaotic maps [13] and what machine learning can tell us about these
fractional logistic maps [1].
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Introduction

In numerical analysis it is common to solve systems of nonlinear equations of
the form H(w) = 0, where H(w) = (h1(w), . . . , hm(w)) is an operator defined
on D ⊂ Rm, H : D → Rm, where hi : D ⊂ Rm → R, with 1 ≤ i ≤ m. In many
cases, it is not easy to obtain the exact solution of this problems and, for this
reason, we usually use iterative methods to approximate the solution.

One of the most used iterative schemes is Newton’s method,

w(0) ∈ D,

w(n+1) = w(n) −H ′(w(n))−1H(w(n)), n ≥ 0
(1)

which, under certain conditions, is efficient, simple, has a good dynamical be-
haviour and converges quadratically in each step. However, the applications of
Newton’s method and its good qualities are restricted by some conditions such
as: the need to iterate the method from an initial estimate close to the solution
and the condition that the Jacobian matrix H ′(w(n)) needs to be nonsingular
in an environment of solution. This last condition is necessary in order to the
inverse H ′(w(n))−1 exists and we are able to define Newton’s method correctly.

For this reason, in papers such as [2]- [4] the authors propose some variants
of Newton’s method that converge quadratically to the solution despite the fact
that the Jacobian matrix has come singularities.

In [2], the authors introduce a variant of Newton’s method that works prop-
erly for a special case of systems with multiplicities, including a weight matrix
in the iterative function.

In particular, in [3], the modified Newton’s iterative scheme for systems,
defined by the following iterative scheme, is proposed:



304 Eva G. Villalba, M. A. Hernández-Veró, E. Mart́ınez

w(0) ∈ D,

w(n+1) = w(n) − [M(w(n)) +H ′(w(n))]−1H(w(n)), n ≥ 0,
(2)

where the components of the matrix M(w(n)) are given by

(M(w(n)))ij =

λ
(n)
i hi(w

(n)) if i = j

0 if i ̸= j

where λ
(n)
i ∈ R, 0 < |λ(n)i | < +∞ with i = 1, . . . ,m and n = 0, 1, 2, . . ., is the

i-th component of the variable vector λ(n), chosen so that the matrix M(w(n))+
H ′(w(n)) becomes nonsingular in the domain D.

Our main objective in this work is to compare dynamically Newton’s and
Newton’s modified methods when they are applied to systems whose Jacobians
are singular in some points and, after that, we study the semilocal convergence
of the method (2). We conclude the study with a numerical analysis in which
we apply the modified Newton’s method to solve different numerical examples
where Newton’s scheme is not applicable due to the presence of singularities.

The applicability of the method

We consider now the following example from the paper [5] in order to show the
applicability of the studied iterative method for large nonlinear systems with
singularities. wi sin(wi+1)− 1 = 0, 1 ≤ i ≤ m− 1,

wm sin(w1)− 1 = 0.
(3)

For solving this nonlinear system, we use variable precision arithmetic with
100 digits and different initial guesses in order to reach the distance between
consecutive iterations less than the tolerance 10−25, that is we solve this example
for some values of m comparing the behaviour of Newton’s method and modified
Newton’s method (2). In this case we use λ as a constant vector of size m.

Firstly, we consider m = 2, the nonlinear system has infinite solutions as
we can appreciate in Figure 1. If we concentrate in the solutions around the
coordinates origin we have s1 = (1.1142 . . . , 1.1142 . . .) and the symmetric s2 =
−s1.

We can check in Table 1 the numerical results starting by different initial
estimates. Notice that, Newton’s scheme does not converge in some cases be-
cause the jacobian is singular, but we find an adequate value of parameter λ for
which modified Newton’s method converges. In this Table, the second column
represents the starting guess, the second one describes the parameter λ used as
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Fig. 1: Representation of nonlinear system (3) for n = 2.
.

a constant vector in the corresponding domain, the following is the number of
iterations for reaching the tolerance, the following two columns are the distance
between the last two consecutive iterates and the value of the nonlinear operator
H at last iterate, the seventh is the approximated computational order of con-
vergencence (defined in [1]) and, finally, the las one represents the approximated
solution.

Table 1: Convergence results for Example 4 with m = 2.

Method w(0) λ iter ∥w(k+1)
m − w(k)

m ∥ ∥H(w(k+1))∥ p Sol

Newton (1) (0, 0) − − − − − −
Mod. Newton (2) (0, 0) −1 6 1.4542e− 31 2.0195e− 31 2 s1
Mod. Newton (2) (0, 0) 1 6 1.4542e− 31 2.0195e− 31 2 s2
Newton (1) (0.9, 0.2) − 12 2.4496e− 26 1.1518e− 26 1.9781 s2
Mod. Newton (2) (0.9, 0.2) −0.2 6 2.4496e− 26 7.2143e− 28 1.9992 s1
Newton (1) (1, 0) − − − − − −
Mod. Newton (2) (1, 0) −0.2 7 3.2984e− 32 3.0995e− 32 2 s1

Now, we solve the nonlinear system consider for m = 3.We can see in Figure
2 the representation of the 3 surfaces having infinite solutions. The behaviour to
the iterative methods in order to find solutions s1 = (1.1142 . . . , 1.1142 . . . , 1.1142 . . .)
and the symmetric s2 = −s1 is analogous to the case n = 2, so we look for differ-
ent solutions, for example, starting from w(0) = (−1, 1, 0.5), Newton’s method
does not converge while the modified Newton’s method goes to the solution
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s3 = 9.7165 . . . , 3.0385 . . . ,−3.4770 . . .. See Table 2 for contrasting numerical
results.

Fig. 2: Representation of nonlinear system (3) for m = 3.
.

We can check in Table 2 the numerical results starting by different initial
guesses, again we have that Newton’s method does not converge because the
jacobian is singular while the modified version works properly.

Finally we solve this example for m = 50 with the aim of analyzing the
behaviour of these methods for bigger size problems. The big system has also
infinite solutions, being s1 and s2 similar to the previous cases but with the
corresponding 50 components. We take as initial estimate the following vector of

size 50: w
(0)
a = [w

(0)
1 w

(0)
2 ], where w

(0)
1 and w

(0)
2 are subvectors of sizes 20 and 30,

respectively, defined as w
(0)
1 = ones(1, 20) and w

(0)
2 = 1/4 ∗ ones(1, 30). In Table

2, we compare the numerical results as in the previous cases and, now, we also
show the execution time in seconds in order to reach the approximated solution
in the last column.
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Table 2: Convergence results for Example 4 with m = 3.

Method w(0) λ iter ∥w(k+1)
m − w(k)

m ∥ ∥H(w(k+1))∥ p Sol

Newton (1) (−1, 1, 0.5) − 100 NC NC − −
Mod. Newton (2) (−1, 1, 0.5) −1 9 1.1912e−26 3.4423e−26 2.0908 s3
Mod. Newton (2) (−1, 1, 0.5) −1.2 11 5.8898e−49 5.9379e−49 1.9999 s1
Newton (1) (9, 3,−3) − 7 4.0701e−48 1.3556e−47 1.9999 s3
Mod. Newton (2) (9, 3,−3) 0.1 6 4.2756e−26 1.5069e−25 2.0014 s3
Mod. Newton (2) (9, 3,−3) 0.01 7 1.7024e−48 5.6709e−48 1.9998 s3
Mod. Newton (2) (9, 3,−3) 1 7 5.0351e−46 3.2056e−45 1.9411 s3

Table 3: Convergence results for Example 4 with n = 50.

Method w(0) λ iter ∥w(k+1)
m − w(k)

m ∥ ∥H(w(k+1))∥ p Sol Time

Newton (1) w
(0)
a − 100 NC NC - - 54.9641

Mod. Newton (2) w
(0)
a −1 8 2.3557e−32 2.4208e−32 2.0 s1 4.3789

Mod. Newton (2) w
(0)
a −1.2 8 3.4272e−26 3.3661e−26 2 s1 4.3982

Newton (1) w
(0)
a − 5 2.1110e−35 2.9318e−35 1.9999 s1 3.4861

Mod. Newton (2) w
(0)
a 0.1 5 2.2719e−30 3.1553e−30 2.0 s1 3.1588

Mod. Newton (2) w
(0)
c −0.1 5 6.6908e−31 9.2922e−31 1.9999 s1 2.8910
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1 Introduction

In mathematical modelling, we often find the problem of solving the system
F (x) = 0, where F is a nonlinear operator defined on some open set Ω ⊂ X,
F : Ω → Y and X, Y are Banach spaces. Iterative methods are used to solve
these problems, such as Newton’s method, an optimal method of order two.

However, the implementation of this method requires calculating the inverse
operator F ′(xn)

−1 per iteration, then, if the operator F is nondifferentiable, the
method is not applicable. Therefore, it is common to replace this operators by
a divided differences operator of order one. If this operator is of the form of
[xn + F (xn), xn;F ], we obtain Steffensen’s method [3].

Due to the development of technology, it is necessary to design iterative
processes with higher orders of convergence that are also efficient. Therefore,
we are interested in studying the following family of derivative free iterative
methods, constructed in [4],

x0 given in D,

wn = xn + γF (xn),

yn = xn − [wn, xn;F ]
−1F (xn),

λn = I − [wn, xn;F ]
−1[yn, wn;F ],

zn = yn − P (λn)[yn, xn;F ]−1F (yn),

δn = I − [wn, xn;F ]
−1[zn, yn;F ]P (λn),

xn+1 = zn −Q(λn, δn)[zn, yn;F ]
−1F (zn), n ≥ 0,

(1)
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where γ ∈ R and P,Q : L(E1) → L(E1) are linear weight operators, where
L(E1) is the domain of linear operators that are bounded, this is L(E1) = {ξ :
E1 → E1 linear operator : ξ is bounded }. This process is of convergence order
7 provided a number of constraints on the operators P and Q [5].

Moreover, taking the real parameter γ as operators of the form γn : D×D →
L(E2, E1), the authors obtain the following processes with memory

x0 given in D, ,

wn = xn + γnF (xn),

yn = xn − [wn, xn;F ]
−1F (xn),

λn = I − [wn, xn;F ]
−1[yn, wn;F ],

zn = yn − P (λn)[yn, xn;F ]−1F (yn),

δn = I − [wn, xn;F ]
−1[zn, yn;F ]P (λn),

xn+1 = zn −Q(λn, δn)[zn, yn;F ]
−1F (zn), n ≥ 0,

(2)

taking
γn = −[xn, xn−1;F ]

−1, (3)

γn = −[2xn − xn−1, xn−1;F ]
−1, (4)

γn = −[xn, yn−1;F ]
−1, (5)

γn = −[2xn − yn−1, yn−1;F ]
−1. (6)

Then, the convergence orders are 7+
√
65

2 , 8, 4+
√
17 and 9+

√
89

2 , respectively. That
is, the convergence speed increases from 7 to 9.21699.

Motivation

The application of these important results presents the following problems, which
limit the use of these processes:

(1) Although the processes (1) and (2) do not require the inversion of F ′, the
proof of convergence is carried out by assuming that F (4) at least exists and
is bounded.

(2) The results are shown on the space Rm, with m ∈ N . But, they can apply on
equations defined on more general spaces such as Hilbert or Banach spaces.

(3) There are no results on the isolation of the solution x∗ in a neighborhood
containing it.

(4) It is not known a priori how many iterations must be run to obtain a prede-
termined accuracy.

(5) Local convergence results in [5] do not provide a criterion for choosing x0
ensuring the convergence of these methods.

The problems (1)− (5) constitute our motivation for writing this paper. Here is
how to respond positively to these problems.
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Novelty

(a1) The convergence conditions depend only and exclusively on the operators
which appear on the processes, i.e. the divided difference [., .;F ] and the
operator F .

(a2) The results are valid on Banach spaces.
(a3) Isolation of the solution results are given.
(a4) A priori estimates on ||xn−x∗|| determine the required number of iterations

such that ||xn − x∗|| is less than a certain accuracy.
(a5) New local convergence as well as semilocal convergence results are developed

using generalized conditions (ω-continuity).

2 Numerical experiments

Now, we want to apply the iterative family with memory analyzed in the In-
troduction section in order to approximate the solution of a nonlinear problem
defined in generic Banach spaces.

Specifically, we consider the nonlinear integral equation

x(s) = g(s) + λp(s)

∫ b

a

q(t)[Φ(x)](t) dt, (7)

we apply the iterative scheme (1) to solve the equation F (x)(s) = 0, where

[F (x)](s) = x(s)− g(s)− λp(s)
∫ b

a

q(t)[Φ(x)](t)dt, (8)

with F : Ω ⊆ C([a, b])→ C([a, b]), considering the set C([a, b]) with the max-norm
as a Banach space, functions x(s), g(s), p(s) and q(s) are continuous functions
defined in the interval [a, b], and [Φ(x)](t) is a continuous function defined in Ω,
known as Nemystkii’s operator. In this case, [Φ(x)](t) = ϕ(x(t)), where ϕ : R→
R is a continuous function.

In order to obtain an approximation for a solution of (7) we deal with the ap-
proximation of the derivative operator F ′(x(s)) by divided differences operator,
see [1] and [2], where [x, y;F ] ∈ L(C([a, b]), C([a, b])), that must verified, [3]:

[x, y;F ](x− y) = F (x)− F (y), (9)

with L(C([a, b]), C([a, b])) denotes the space of bounded linear operators in the
defined Banach space.

We work with nondifferentiable problems, so, we can define for each x, y ∈
C([a, b]) the following function:

ψ[x, y](t) =


ϕ(x(t))− ϕ(y(t))

x(t)− y(t)
if t ∈ [a, b] with x(t) ̸= y(t),

0 if t ∈ [a, b] with x(t) = y(t).
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Then, we have the following divided difference operator:

[x, y;F ]u(s) = u(s)− λp(s)
∫ b

a

q(t)ψ[x, y](t)u(t) dt = ω(s), (10)

so we can characterize the inverse operator as follows:

u(s) = [x, y;F ]−1ω(s) = ω(s) + λp(s)E(x, y, w) (11)

where E(x, y, w) =
∫ b

a
q(t)ψ[xn, yn](t)u(t) dt.

That is, to obtain [x, y;F ]
−1

explicitly and independently of u(t), we multiply
(11) by q(s)ψ[x, y](s), and integrate between a and b. So, we obtain:

E(x, y, w) =
∫ b

a

q(s)ψ[x, y](s)ω(s) ds+ λ

∫ b

a

p(s)q(s)ψ[x, y](s) ds E(x, y, w).

Next, if

C(x, y) =

∫ b

a

p(s)q(s)ψ[x, y](s) ds and B(x, y, w) =

∫ b

a

q(s)ψ[x, y](s)ω(s) ds,

(12)
then

E(x, y, w) =
B(x, y, w)

1− λC(x, y)
.

Thus, we can define the action of [x, y;F ]
−1

, given by

[x, y;F ]
−1
ω(s) = ω(s) + λp(s)E(x, y, w).

So, the application of the family of iterative schemes (1) is given by the following
algorithm.

Fixed x−1(s), x0(s) ∈ Ω ⊆ C([a, b]), for n ⩾ 0:

– First step: Calculate:

F (xn)(s) = xn(s)− g(s)− λ p(s)
∫ b

a

q(t)Φ(xn)(t) dt.

– Second step: Calculate: ψ[xn−1, xn](s), by (12) we obtain C(xn−1, xn) and
B(xn−1, xn, F (xn)) and then,

wn(s) = xn(s)− F (xn)(s)− λp(s)E(xn−1, xn, F (xn)).

– Third step: Calculate: ψ[wn, xn](s), then obtain C(wn, xn) andB(wn, xn, F (xn))
and then,

yn(s) = xn(s)− F (xn)(s)− λp(s)E(wn, xn, F (xn)).
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– Fourth step: Notice how the operator µn works, let I the identity matrix,
then:

µn(x(s)) = (I − [wn, xn, F ]
−1[yn, wn, F ])(x(s))

= x(s)− [wn, xn, F ]
−1(x(s)− λp(s)

∫ b

a

q(t)ψ[yn, wn](t)x(t) dt)

= x(s)− (x(s) + λp(s)E(wn, xn, x(s)) + [wn, xn, F ]
−1(x̃(s))

= −λp(s)E(wn, xn, x(s)) + x̃(s) + λp(s)E(wn, xn, x̃(s)),

where x̃(s) = λp(s)
∫ b

a
q(t)ψ[yn, wn](t)x(t) dt.

– Fifth step: Calculate:

F (yn)(s) = yn(s)− g(s)− λ p(s)
∫ b

a

q(t)Φ(yn)(t) dt

and ψ[yn, xn](s), then obtain C(yn, xn) and B(yn, xn, F (yn)) next,

zn(s) = yn(S)−A(µn)(F (yn)(s) + λp(s)E(yn, xn, F (yn))

That is, for A(µn) = µ2 + µn + I, if we denote hn(s) = (F (yn)(s) +
λp(s)E(yn, xn, F (yn)), we have:

µn(hn(s)) = −λp(s)E(wn, xn, hn(s)) + h̃n(s) + λp(s)E(wn, xn, h̃n(s)),

where h̃n(s) = λp(s)
∫ b

a
q(t)ψ[yn, wn](t)hn(t) dt.

So, we obtain:

zn(s) = yn(s)− µ2
n(hn(s))− µn(hn(s))− hn(s).

– Sixth step: Notice how the operator δn works:

δn(x(s)) = (I − [wn, xn, F ]
−1[zn, yn, F ])A(µn(x(s)))

= A(µn(x(s)))− [wn, xn, F ]
−1(A(µn(x(s)))− λp(s)

∫ b

a

q(t)ψ[zn, yn](t)A(µn(x(s))) dt)

= −λp(s)E(wn, xn, A(µn(x(s))) + [wn, xn, F ]
−1(Ã(µn(x(s)))

= −λp(s)E(wn, xn, A(µn(x(s))) + Ã(µn(x(s))) + λp(s)E(wn, xn, Ã(µn(x(s))),

where Ã(µn(x(s))) = λp(s)
∫ b

a
b(t)ψ[zn, yn](t)A(µn(x(s))) dt.

– Seventh step: Calculate:

F (zn)(s) = zn(s)− g(s)− λ p(s)
∫ b

a

q(t)Φ(zn)(t) dt

and ψ[zn, yn](s), then obtain C(zn, yn) and B(zn, yn, F (zn)) so:

xn+1(s) = zn(s)−D(µn, δn)(F (zn)(s) + λp(s)E(zn, yn, F (zn)),

with D(µn, δn) = I + µn ◦ δn + 13/6µn ◦ δ2n, so let be fn(s) = F (zn)(s) +
λp(s)E(zn, yn, F (zn)) then we have:

xn+1(s) = zn(s)− fn(s)− µn(δn(fn(s)))− 13/6µn(δ
2
n(fn(s))).
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Remark: Notice that the algorithm has been described for case (3), but for
obtaining the iterates in different cases, given by (4) − (6), we have to change
in second step the parameters of function ψ, so we have:

I. Method Equation γn Second step:

ALG1 (3) −[xn, xn−1;F ]
−1 ψ(xn, xn−1)

ALG2 (4) −[2xn − xn−1, xn−1;F ]
−1 ψ(2xn − xn−1, xn−1)

ALG3 (5) −[xn, yn−1;F ]
−1 ψ(xn, yn−1)

ALG4 (6) −[2xn − yn−1, yn−1;F ]
−1 ψ(2xn − yn−1, yn−1)

Table 1: Different algorithms with memory depending on the choice of γn.

Particular example

Now, in (7) we take g(s) = (1 − 11/80λ)s − 1/2, λ = 1, p(s) = s, q(t) = t and
Φ(x(t)) = x3(t) + |x(t)|, so we have the nonlinear integral equation:

[F (x)](s) = x(s)− ((1− 11/80)s− 1/2)− s
∫ b

a

t(x3(t) + |x(t)|)dt, (13)

which exact solution is x∗(s) = s− 1/2.
Then, by taking as starting estimates the functions x0(s) = s and x−1(s) =

1/3, with s ∈ [0, 1], we apply the iterative methods given in Table 1, following
the steps one through seven described above, where all integrals have been ap-
proximated by Simpson’s quadrature with 200 nodes. We work with MATLAB
R 2019a with 5000 digits, by imposing the stopping criteria ∥xn+1(s)− xn(s)∥ ≤
10−300. Notice that we have to work with variable precision arithmetic for run-
ning high order methods in order to reach the approximated computational order
of convergence, see [?], that is shown in the numerical results of Table 2 by p. We
observe in second column of Table 2 that ALG2 and ALG4 methods needs one
less iteration for reaching the required tolerance, also we show in the Table the
distance between the last two iterations and the value of the nonlinear operator
F at the approximated solution.
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I. Method iter ∥xn+1(s)− xn(s)∥ ∥F (xn+1(s))∥ p

ALG1 5 6.42499e-1950 1.29133e-5007 7.46643

ALG2 4 7.56024e-341 1.02825e-2729 8.18241

ALG3 5 6.78516e-896 4.11821e-5008 6.67125

ALG4 4 2.40361e-316 3.06247e-2363 7.51117

Table 2: Numerical results for different values of γn.
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Abstract. In this work, a numerical comparison of two families of iter-
ative methods for solving nonlinear systems of equations is carried out.
Specifically, from an initial three-step family of iterative schemes with a
parameter and order of convergence 4, a biparametric family is designed
approximating the Jacobian matrix by a divided difference operator. The
new iterative family holds the order of convergence 4, but its iterative
scheme is free of Jacobian matrices. To compare the efficiency of the two
iterative classes, some of their members are selected by setting the param-
eters based on a previous multidimensional dynamical study, obtaining
very efficient results for solving polynomial systems for the Jacobian-free
methods.

Keywords: Nonlinear systems, Jacobian-free, Iterative family, Numeri-
cal analysis

1 Introduction

In many scientific applications, solving systems of nonlinear equations has be-
come a common and recurring challenge. The complexity of analytically calculat-
ing precise solutions for such problems has led to the use of iterative fixed-point
algorithms to approximate the solutions of these systems, allowing for practical
use in real-world scenarios. In this sense, the problem of finding a real solution
x∗ of F (x) = 0, where F : D ⊂ Rn −→ Rn is a nonlinear multidimensional
function, can be obtained as the fixed point of some function G : Rn −→ Rn by
means of an iterative procedure of the form

x(k+1) = G(x(k)), k = 0, 1, 2, . . .

being x(0) the initial estimation.

Over the last few decades, several multidimensional iterative methods have
been proposed to enhance the speed of convergence and the computational effi-
ciency [1–4]. In [5] the authors present the following family of iterative methods
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with a real parameter β ̸= 0:

y(k) = x(k) −
[
F ′(x(k))

]−1
F (x(k)),

z(k) = y(k) − β
[
F ′(x(k))

]−1
F (y(k)),

x(k+1) = z(k) − 1

β

[
F ′(x(k))

]−1 (−(β − 1)2F (y(k)) + F (z(k))
)
.

k = 0, 1, 2 . . .

It is shown in [5] that the previous class, called M4 family, has order of con-
vergence 4 for any value of the parameter. In particular, when β = 5, then the
order of the corresponding method is 5. The parametric class M4 is designed
using Newton’s composition with itself as the main technique, but with frozen
Jacobian in order to reduce the number of different functional evaluations and
then the computational and operational cost.

Since it is common that the nonlinear function to be solved does not have a
known Jacobian matrix or it is a non differentiable multidimensional operator, in
this work we propose an iterative family that does not require Jacobian matrices.
Section 2 is devoted to the design of the new family of iterative schemes after
approximating the Jacobian matrices present in M4. In Section 3 a numerical
analysis of the two families of methods applied to different nonlinear functions
is performed. Finally, the conclusions of this work are shown in Section 4.

2 Biparametric family of iterative methods

First of all, we consider the following approximation for the Jacobian matrix:

F ′(x(k)) ≈
[
x(k), w(k);F

]
, (1)

where w(k) = x(k) + γF (x(k)), γ ∈ R, and [·, ·;F ] : D ⊆ Rn × Rn −→ L(Rn)
denotes the divided difference operator satisfying

[x, y;F ](x− y) = F (x)− F (y), x, y ∈ D.

When we replace the approximation (1) in family M4, the following Jacobian-free
biparametric family, denoted by JF4, is obtained:

y(k) = x(k) −
[
x(k), w(k);F

]−1
F (x(k)),

z(k) = y(k) − β
[
x(k), w(k);F

]−1
F (y(k)),

x(k+1) = z(k) − 1

β

[
x(k), w(k);F

]−1 (−(β − 1)2F (y(k)) + F (z(k))
)
,

k = 0, 1, 2 . . .
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where w(k) = x(k) + γF (x(k)), γ ∈ R. It can be shown by using Taylor series
developments that the family of iterative schemes JF4 has order of convergence
4 for any value of parameters γ and β.

In the next section, we are going to analyse numerically the performance of
some members of the two iterative families to check their functionality in solving
systems of nonlinear equations.

3 Numerical experiments

In [8] the stability of family M4 applied to quadratic polynomial systems is stud-
ied using fundamentals from real multidimensional dynamics. This study allows
to determine the appropriate initial estimates to start the iterative process and
converge to the solution of the problem. Furthermore, in a family of iterative
methods with a parameter, this study allows to determine the most stable mem-
bers in terms of stability. After the analysis performed in [8], we have selected
parameters β = −10, β = 1 and β = 5, as these values provide iterative meth-
ods of family M4 with wide basins of attraction, visualized in their respective
dynamical planes.

Now, we are going to use the selected iterative schemes to solve different
nonlinear systems and also to compare the results with those obtained for the
iterative family JF4 free of Jacobian matrices. As JF4 is a biparametric family,
we have fixed γ = 0.1 in order to generate a sequence of points {w(k)}k≥0, where
w(k) = x(k) + γF (x(k)), close to {x(k)}k≥0.

The nonlinear functions selected for the numerical tests are as follows:

• F1(x1, x2) =

x21 − 1 = 0

x22 − 1 = 0
, with x∗1−4 = (±1,±1),

• F2(x1, x2) =

x21 − x2 − 19 = 0

x3
2

6 − x
2
1 + x2 − 17 = 0

, with x∗1 = (−5, 6) and x∗2 = (5, 6),

• F3(x1, x2) =

x21 + x22 − 1 = 0

x21 − x22 + 1/2 = 0
, with x∗1−4 = (± 1

2 ,±
√
3
2 ),

where x∗ denotes the exact solutions in R2. We have select bidimensional non-
linear functions in order to represent the basins of attraction of each method in
the corresponding dynamical planes. According to the implementation in [6, 7],
the dynamical planes represent the set of initial estimations of a method that
converge to the solution of the problem. As all the iterative schemes of M4 and
JF4 require an initial point x(0), the dynamical planes will sow us the most con-
venient initial estimates to obtain approximations that converge to the solution
of each problem.

Figures 1-3 represent the dynamical planes of F1, F2 and F3, respectively,
when the nonlinear functions are solved by using the methods of M4 and JF4
corresponding to β = {−10, 1, 5} and γ = 0.8. Each point in the planes, taking
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a mesh of 500 × 500 points (x1, x2), is considered as initial estimation of the
method. The convergence is established when the difference between the point of
the orbit of each initial estimate and any of the roots of the nonlinear function is
less than 10−3 with a maximum of 50 iterations. When there is convergence, the
point is represented in a colour different from black, which denotes divergence.
In addition, the roots are represented with white stars.
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(f) JF4, β = 5

Fig. 1: Dynamical planes for solving F1(x) = 0

The dynamical planes allow us to select the best initial estimations for each
method in order to converge to the solution of the problem. We can observe in
Figures 1-3 that methods from M4 family have wide basins of attraction than
methods from JF4 family. Moreover, the schemes corresponding to β = 1 have
the largest number of initial estimates that converge to some root.

To compare these results with the numerical performace, the methods of each
family have been implemented using Matlab R2022b and variable precision arith-
metics with 200 digits. Methods corresponding to β = {−10, 1, 5} and γ = 0.8
have been used for solving the selected nonlinear functions and taking different
initial estimations from the dynamical planes (from the colored regions). The
convergence is set when ||x(k+1)−x(k)|| < 10−50 or ||F (x(k+1))|| < 10−50, under
50 iterations. The results obtained are summarized in Table 1.

Table 1 shows the number of iterations required for each test, the difference
between the two last iterations and the norm of the function in the last iterate.
It can be observed that, although the basins of attraction of the methods of
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(f) JF4, β = 5

Fig. 2: Dynamical planes for solving F2(x) = 0

M4 family were larger than those of the Jacobian-free class, in the numerical
implementation the Jacobian-free family is much more efficient for solving the
considered nonlinear problems as it achieves convergence to solutions with few
iterations and with high accuracy.

4 Conclusions

In this work, a comparison of the efficiency and stability of two families of iter-
ative methods has been carried out. Starting from a family of iterative schemes
with order of convergence 4, a biparametric family free of Jacobian matrices
and with order 4 has been designed using a divided difference operator. After
analyzing on different polynomial systems the basins of attraction of some of the
members of the two families, the initial estimates have been selected to execute
numerically these methods. The results show that the M4 family contains stable
iterative schemes. However, the numerical implementation shows more efficient
results for the JF4 family, achieving good approximations to the solutions of the
proposed problems.
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Fig. 3: Dynamical planes for solving F3(x) = 0
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Function β x(0) Method iter ||x(k+1) − x(k)|| ||F (x(k+1))||

F1

−10

−1.2
1.4

 M4 31 5.3575e–50 2.5588e–51

JF4 4 9.8862e–18 2.6270e–68

1

−0.8
−0.4

 M4 – – –

JF4 4 2.3790e–49 0

5

0.8

1.5

 M4 35 2.1065e–50 1.6204e–51

JF4 4 3.7636e–25 2.0064e–98

F2

−10

−4
7

 M4 30 9.7407e–51 3.4069e–51

JF4 7 2.3187e–48 2.5853e–191

1

 5.5

−2.5

 M4 – – –

JF4 13 6.4559e–32 0

5

6

7

 M4 30 1.4816e–51 4.6232e–52

JF4 5 3.8100e–17 6.8618e–67

F3

−10

 1

1.5

 M4 50 2.2010e–45 4.4467e–46

JF4 5 1.0556e–25 1.9316e–99

1

−1.5
−0.5

 M4 – – –

JF4 4 1.5551e–17 4.8362e–135

5

−0.5
−1.2

 M4 30 2.79339e–50 1.5078e–51

JF4 4 7.8856e–33 7.2914e–129

Table 1: Numerical results for solving nonlinear problems
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Abstract. In this paper, we introduce a new three-step sixth-order uni-
parametric iterative family for solving nonlinear equations and its exten-
sion for systems. A complex dynamical analysis is carried out on scalar
cases and a real dynamical study on vector cases. The purpose of this
manuscript is to show the impact of these studies on the performance of
the family, considering parameter spaces and dynamical planes as tools
to determine the best and worst iterative schemes in terms of stability.
Several numerical tests are performed with selected members to illustrate
the errors and the number of iterations to converge to the solution.
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1 Introduction

The problem of solving non-linear equations and systems without algebraic so-
lutions is a common challenge in scientific and engineering domains, especially
when dealing with real-world physical phenomena. Many physical problems in-
volve complex relationships that cannot be solved analytically, necessitating the
use of numerical methods for their solution.

Numerical methods have made significant progress and are vital in scientific
and engineering applications where analytical solutions are challenging or im-
possible to obtain. State-of-the-art numerical methods are typically iterative in
nature and leverage dynamical analysis techniques to improve their convergence
and stability.

Dynamical analysis involves studying the behavior of iterative schemes ap-
plied to dynamical systems, with a focus on understanding their accuracy, sta-
bility, and convergence properties. The impact of complex and real dynamical
studies on the performance of numerical methods has been a subject of research
in fields such as computational mathematics, physics, and engineering. The main
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goal is to identify the limitations and potential errors of iterative schemes when
applied to non-linear equations and systems.

To analyze the stability and reliability of numerical methods, researchers
have found the dynamical behavior of the rational operator associated with these
schemes applied to low-degree nonlinear polynomial equations or systems to be
an effective tool. For example, refer to [1, 3] and the references they contain, as
they provide valuable insights into this aspect.

Thus, in this manuscript, we present a novel three-step sixth-order unipara-
metric iterative family designed for solving nonlinear equations, along with its
extension for systems of equations. We conduct complex dynamical analysis on
scalar cases and real dynamical analysis on vector cases. The primary objective
of this study is to demonstrate how these analyses impact the performance of
the iterative family, using parameter spaces and dynamical planes as tools to
determine the most stable and reliable iterative schemes. We develop several
numerical tests using selected members of the family to illustrate the errors and
the number of iterations required for convergence to the solution.

The rest of the article is organized as follows: Section 2 presents the novel
three-step uniparametric family of iterative methods, to solve equations and
systems, and its order of convergence; Section 3 provides the complex and real
dynamical analyses on scalar and vector cases, respectively; Section 4 presents
the numerical tests for selected members of the family and the results obtained;
and finally, Section 5 provides some relevant conclusions of this research.

2 Novel family of iterative schemes

The novel uniparametric family for non-linear equations, object of study in this
manuscript and which we will call mctc(α), has the following iterative expression:

yk = xk −
f(xk)

f ′(xk)

zk = yk −
f(yk)

2f [xk, yk]− f ′(xk)

xk+1 = zk − (α+ (1 + α)uk + (1− α)vk)
f(zk)

f ′(xk)

, (1)

where uk = 1 − f [xk, yk]

f ′(xk)
, vk =

f ′(xk)

f [xk, yk]
, k = 0, 1, 2, ..., and α is an arbitrary

parameter. The divided difference operator f [·, ·] : I×I ⊂ R×R→ L(R), defined
in [6], satisfies f [x, y](x− y) = f(x)− f(y),∀x, y ∈ I.

Theorem 1 (scalar cases). Let f : I ⊆ R → R be a sufficiently differentiable
function on an open interval I and ξ ∈ I a simple root of the nonlinear equation
f(x) = 0. Suppose that f(x) is continuous and sufficiently differentiable in an
environment of the simple root ξ, and x0 is an initial estimate close enough to
ξ. Then, the sequence {xk}k≥0 obtained by using the expression (1) converges to
ξ with an order of convergence of six, being its error equation
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ek+1 =
(
6C5

2 − 7C3
2C3 + C2C

2
3

)
e6k +O

(
e7k
)
,

where ek = xk − ξ, Cq =
1

q!

f (q)(ξ)

f ′(ξ)
and q = 2, 3, ...

Based on Theorem 1, whose proof can be found in [4], it is evident that
the newly proposed uniparametric family of iterative methods for scalar cases
achieves a remarkable order of convergence of six, regardless of the parameter
α. This raises the intriguing question of whether this family can be extended to
handle vector cases and, if so, how its order of convergence will be affected. To
address this intriguing inquiry, we introduce the novel family tailored explicitly
for systems and which we will call MCTC(α), as illustrated below:


y(k) = x(k) − [F ′(x(k))]−1F (x(k)),

z(k) = y(k) − [2[x(k), y(k);F ]− F ′(x(k))]−1F (y(k)),

x(k+1) = z(k) − (αI + (1 + α)u(k) + (1− α)v(k))[F ′(x(k))]−1F (z(k)),

(2)

where u(k) = I − [F ′(x(k))]−1[x(k), y(k);F ], v(k) = [x(k), y(k);F ]−1F ′(x(k)), k =
0, 1, 2, ..., and α is an arbitrary parameter. The divided difference operator
[x, y;F ] is the map [·, ·;F ] : D×D ⊂ Rn ×Rn → L(Rn), satisfying [x, y;F ](x−
y) = F (x)− F (y),∀x, y ∈ D.

Theorem 2 (vector cases). Let F : D ⊆ Rn → Rn be a sufficiently differen-
tiable function in an open convex set D and ξ ∈ D a solution of the non-linear
system F (x) = 0. Let us suppose that F ′(x) is continuous and nonsingular at
ξ and x(0) is an initial estimate close enough to ξ. Then, sequence {x(k)}k≥0

obtained by using expression (2) converges to ξ with order six, being its error
equation

e(k+1) =
(
C2

3C2 − C3C
3
2 + 6C5

2 − 6C2
2C3C2

)
e(k)

6
+O(e(k)

7
),

where e(k) = x(k) − ξ, Cq = 1
q! [F

′(ξ)]−1F (q)(ξ) and q = 2, 3, ...

According to Theorem 2, whose proof can be found in [5], it can be deduced
that the uniparametric family for vector cases also exhibits an impressive order
of convergence of six, for any value of α.

3 Complex and real dynamics for stability

The performance of the novel family is significantly influenced by complex and
real dynamical analysis. This is evident as parameter spaces, parameter lines,
and dynamical planes provide crucial insights into the stability of individual



Impact of dynamical analysis on the performance of a new iterative family 325

members within the family. For this reason, we analyze the dynamical behavior of
the rational operators associated to iterative schemes and applied to low-degree
non-linear polynomial equations (see Equation (3)) or systems (see Equation
(4)), since the criterion of stability or instability of a method applied to these
problems can be generalized to other unidimensional or multidimensional cases,
respectively.

f(x) = (x− a)(x− b) = 0, a, b ∈ R. (3)

F (x1, x2) =
(
x21 − 1, x22 − 1

)
= (0, 0) . (4)

By exploring the parameter spaces or parameter lines derived from critical
points, we gain a comprehensive understanding of the performance of various
members within the family, aiding us in selecting a suitable method. In the
complex analysis of mctc(α) family, we can identify a maximum of nine free
critical points. Of these, we obtained two different parameter spaces, P1 and P2,
shown in Figure 1 with the following features:

– A mesh was built, from -500 to 500 in Im{α} and from -600 to 450 in Re{α},
with a step equal to 0.01 (100000× 105000 points).

– The point is red if the method linked to a value of α converges to any of the
roots of the polynomial equation, and black if it diverges once all iterations
are completed.

– The maximum number of iterations is 100 while the stopping criteria is a
tolerance for the error estimation equal to 10−3.

(a) P1 (b) P2

Fig. 1: Parameter spaces of free critical points for scalar cases
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On one hand, when selecting a value of α within the stability regions (red
regions) of the parameter spaces P1 and P2, such as α = 0, the method linked to
this parameter will exhibit favorable dynamical behavior concerning numerical
stability. On the other hand, if a value of α is chosen outside the stability regions
(black regions) of the same parameter spaces, such as α = 200, the method
associated with this parameter will exhibit poor dynamical behavior in terms
of numerical stability. To corroborate this, we construct dynamical planes for
methods associated with the mentioned values of α, as shown in Figure 2, with
the following features:

– A mesh of 1000× 1000 points was built.
– Every initial estimation is iterated 100 times (maximum) with stopping cri-

teria as a tolerance equal to 10−3.
– The points in the mesh are represented depending on the roots to which they

converge: color is brighter when lesser are the iterations.
– If all the iterations are completed and not convergence to any roots is

reached, then the point is represented in black.

(a) mctc(0) (b) mctc(200)

Fig. 2: Dynamical planes for scalar methods

As you can see in Figure 2, dynamical planes illustrate how specific methods
behave in relation to the basins of attraction for their fixed points, periodic
points, and other relevant characteristics. Examining the basins of attraction
allows us to visually interpret the functioning of a method based on multiple
initial estimates.

On one hand, we provide an example of a method within the stability re-
gion, specifically for α = 0. Its dynamical plane, containing a convergence orbit
highlighted in yellow, is depicted in Figure 2a. The method exhibits only two
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basins of attraction associated with the roots, which are colored in orange and
blue. Additionally, there are no black areas representing non-convergence or slow
convergence to the solution. As a result, the method demonstrates favorable dy-
namical behavior and high stability. On the other hand, an example of a method
outside the stability region is presented for α = 200. Its corresponding dynam-
ical plane, with a convergence orbit illustrated in yellow, is displayed in Figure
2b. Notably, the method exhibits more than two basins of attraction, indicating
the presence of other attractors not related to the roots. The basins of the roots
are colored in orange and blue, while the other basins are represented by red
and green regions. Figure 2b demonstrates convergence to an attracting strange
fixed point. Consequently, this method exhibits poor dynamical behavior and
lack stability.

This same analysis is extended to vector cases. Now, it is necessary to work
with the family of iterative methods designed to solve systems of nonlinear equa-
tions, MCTC(α). However, due to the difficulty that may arise in constructing
parameter lines in the analysis of real dynamics, we will build on the results
obtained from complex dynamics, attempting to extrapolate the stability and
instability criteria from scalar cases to vector cases. Thus, we construct dynami-
cal planes for the same values of α associated with stable and unstable methods
in scalar cases, but this time for multidimensional cases, as shown in Figure 3.

(a) MCTC(0) (b) MCTC(200)

Fig. 3: Dynamical planes for vector methods

As observed in Figure 2 and Figure 3, the stability and instability results
of the methods mctc(0) and mctc(200), respectively, extend to the methods
MCTC(0) and MCTC(200). This finding is of great significance as it allows us
to analyze the dynamics of iterative families designed for multidimensional cases,
considering the analysis in unidimensional cases.
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4 Numerical results

In this section, we conduct various numerical tests to validate the theoretical con-
vergence and stability outcomes of the MCTC(α) family displayed in Equation
(2). For this purpose, we employ both stable MCTC(0) and unstable MCTC(200)
methods. These methods are then applied to five nonlinear test systems, each
characterized by specific expressions and corresponding roots, shown in Table 1.

Table 1: Non-linear test systems and corresponding roots.

Non-linear test system Roots

F (x1, x2) =
(
x21 − 1, x22 − 1

)
= (0, 0) ξ ≈ (1, 1)T

G(x1, x2) =

(
x21 + x22 − 1, x21 − x22 −

1

2

)
= (0, 0) ξ ≈

(√
3

2
,
1

2

)T

M(x1, x2) = (ex1ex2 + x1 cos(x2), x1 + x2 − 1) = (0, 0) ξ ≈ (3.4706,−2.4706)T

N(x1, x2) =
(
ln (x21)− 2 ln (cos (x2)), x1 tan (x2)

)
= (0, 0) ξ ≈ (1, 0)T

O(x1, x2) = (x1 + ex2 − cos (x2) + 0.5, 3x1 − x2 − sin (x2)) = (0, 0) ξ ≈ (−0.2535,−0.3851)T

The computations were performed using the Matlab R2020b programming
package with variable precision arithmetic featuring 200 digits of mantissa. For
each method, we analyze the number of iterations (iter) required to achieve
convergence to the solution, subject to the stopping criteria ||x(k+1) − x(k)|| <
10−100 or ||F (x(k+1))|| < 10−100. Here, ||x(k+1) − x(k)|| represents the error
estimation between two consecutive iterations, and ||F (x(k+1))|| is the residual
error of the nonlinear test system.

To assess the theoretical order of convergence of the methods, we calculate
the approximate computational order of convergence (ACOC) as defined in [7].
In the numerical results, if the ACOC values do not stabilize throughout the
iterative process, they are denoted as ’-’. Furthermore, if any of the methods
employed fails to reach convergence within a maximum of 50 iterations, it is
marked as ’nc’.

Thus, in Table 2 we show the numerical performance of MCTC(0) for initial
estimates very close to the solution (x(0) ≈ ξ). We notice that MCTC(0) always
converges to the solution. The theoretical convergence order is also verified by
the ACOC, which is close to six. But, what about the dependence of MCTC(0)
on initial estimations? To answer this question, we analyze this method for initial
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estimates near to and far from the solution, that is, for x(0) ≈ 3ξ and x(0) > 10ξ,
respectively. The results can be observed in Tables 3 and 4.

Table 2: Numerical performance of MCTC(0) on test problems for x(0) ≈ ξ.

System x(0) ||x(k+1) − x(k)|| ||F (x(k+1))|| iter ACOC

F (x1, x2) (0.90, 0.90)T 4.1590e-41 1.0578e-162 3 6.0326
G(x1, x2) (0.80, 0.40)T 1.6140e-29 3.8389e-115 3 5.9785
M(x1, x2) (3.40,−2.40)T 1.1444e-49 1.3224e-131 3 5.5845
N(x1, x2) (0.90, 0.10)T 1.0160e-76 5.8602e-308 4 -
O(x1, x2) (−0.20,−0.30)T 1.2709e-37 6.3818e-107 3 5.9417

Table 3: Numerical performance of MCTC(0) on test problems for x(0) ≈ 3ξ.

System x(0) ||x(k+1) − x(k)|| ||F (x(k+1))|| iter ACOC

F (x1, x2) (3.00, 3.00)T 2.9511e-49 2.6815e-195 4 5.8233
G(x1, x2) (2.60, 1.50)T 1.0829e-49 6.7038e-196 4 5.8689
M(x1, x2) (10.41,−7.41)T 2.3053e-41 1.0439e-113 4 5.9611
N(x1, x2) (3.00, 0.00)T nc nc nc nc
O(x1, x2) (−0.76,−1.16)T 7.0387e-71 7.9136e-174 5 -

The outcomes displayed in Tables 3 and 4 are promising as they reveal that
MCTC(0) converges to the solution in four out of the five non-linear test sys-
tems, regardless of the initial estimates employed. Although the ACOC does not
stabilize in some cases, it approaches a value of six when it does stabilize.

Now, we will proceed to evaluate the performance of the MCTC(200) method.
The numerical results for initial estimates very close to the solution (x(0) ≈ ξ)
and near the solution (x(0) ≈ 3ξ) can be found in Tables 5 and 6, respectively.

The findings from Tables 5 and 6 indicate that MCTC(200) encounters con-
vergence issues. Even for initial estimates very close to the root (x(0) ≈ ξ), this
method always converges to the solution. Moreover, for estimates near the roots
(x(0) ≈ 3ξ), MCTC(200) does not converge to the solution in two out of the
five cases, demonstrating a dependency on the initial estimate and the specific
non-linear test system used. Additionally, the number of iterations increases for
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Table 4: Numerical performance of MCTC(0) on test problems for x(0) > 10ξ.

System x(0) ||x(k+1) − x(k)|| ||F (x(k+1))|| iter ACOC

F (x1, x2) (11.00, 11.00)T 3.4914e-55 0 5 -
G(x1, x2) (9.53, 5.50)T 1.2350e-55 0 5 -
M(x1, x2) (38.18,−27.18)T 4.9654e-57 3.4199e-145 5 5.4814
N(x1, x2) (11.00, 0.00)T nc nc nc nc
O(x1, x2) (−2.79,−4.24)T 3.7780e-39 2.3868e-110 3 -

Table 5: Numerical performance of MCTC(200) on test problems for x(0) ≈ ξ.

System x(0) ||x(k+1) − x(k)|| ||F (x(k+1))|| iter ACOC

F (x1, x2) (0.90, 0.90)T 1.9038e-29 4.6447e-116 3 6.0626
G(x1, x2) (0.80, 0.40)T 5.1091e-67 1.9467e-208 4 -
M(x1, x2) (3.40,−2.40)T 1.6761e-43 2.8365e-119 3 5.9400
N(x1, x2) (0.90, 0.10)T 2.0202e-48 7.7869e-208 4 -
O(x1, x2) (−0.20,−0.30)T 3.8365e-85 6.7625e-202 4 -

the systems in which the solution is reached, compared to the MCTC(0) method
under the same conditions.

As a result, we conclude that the method for α = 0 exhibits robustness,
converging to the solution with few iterations regardless of the initial estimate
and the non-linear test system utilized. On the other hand, the method for
α = 200 is unstable, tending not to converge to the solution based on the initial
estimate and the non-linear test system employed. Furthermore, both methods
converge to the solution with an order of 6, validating the theoretical results
obtained in previous sections regarding the dynamical behavior and convergence
analysis of the MCTC(α) family.

5 Conclusions

In this study, we have successfully developed a highly efficient family of iterative
methods designed to tackle nonlinear equations and systems. Through exten-
sive numerical experiments, the MCTC(α) family has demonstrated remarkable
numerical performance, particularly when considering stable members as repre-
sentatives. The results obtained from the experiments align with the theoretical
analyses, and the order of convergence, as measured by the ACOC, closely ap-
proaches six.
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Table 6: Numerical performance of MCTC(200) on test problems for x(0) ≈ 3ξ.

System x(0) ||x(k+1) − x(k)|| ||F (x(k+1))|| iter ACOC

F (x1, x2) (3.00, 3.00)T 9.6219e-49 3.0304e-193 5 5.7669
G(x1, x2) (2.60, 1.50)T 3.4103e-49 7.5761e-194 5 5.8239
M(x1, x2) (10.41,−7.41)T 5.0005e-75 1.0922e-182 9 -
N(x1, x2) (3.00, 0.00)T nc nc nc nc
O(x1, x2) (−0.76,−1.16)T nc nc nc nc

Overall, the MCTC(α) family exhibits lower errors and requires fewer iter-
ations to converge to the solution. Particularly noteworthy is the method for
α = 0, which has proven to be robust and stable, corroborating the results
obtained from the complex and real dynamics analyses.

However, it is crucial to acknowledge that the method for α = 200 presents a
contrasting behavior. This particular method is found to be unstable and chaotic,
leading to an inability to converge to the solution in accordance with the initial
estimate and the nonlinear system used.

In summary, the MCTC(α) family of iterative methods has demonstrated
its practical and theoretical value in solving nonlinear equations and systems.
The stable members within the family showcase excellent performance, offering
a viable and efficient solution for various scientific and engineering applications.
On the other hand, cautious consideration is needed when employing the method
for α = 200, as it may lead to convergence issues and instability, depending on
the specific problem at hand.
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vectorial methods with weight function
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Abstract. In this work, we show a derivative-free parametric family
with matrix weight function for solving systems of nonlinear equations,
where the elements of the family can have as many steps as we wish.
The element of the family with m-steps has order of convergence 2m if
the weight function verifies some certain conditions. In this work, the
efficiency index is studied in order to see, depending on the size of the
problem to be solved, which of the elements of the family is more rec-
ommendable.

Keywords: Iterative methods, Nonlinear Systems, Procedures with mem-
ory, Parametric Family, Derivative-free, Jacobian-free, Multistep proce-
dure, Steffensen-type scheme

1 Design

There are many iterative methods that use Jacobian matrices in their iterative
expressions in order to solve nonlinear systems, but when the problem is not
differentiable or it is costly to calculate them, we must rely on Jacobian-free
schemes.

In this paper, we present the following derivative-free parametric family with
weight function, denoted asMβ,δSm, defined and studied in [3] with the following
iterative expression for m steps:

z
(k)
1 = x(k) − [w(k), x(k);F ]−1F (x(k)),

z
(k)
2 = z

(k)
1 −H(t(k))[w(k), x(k);F ]−1F (z

(k)
1 ),

...
...

z
(k)
m−1 = z

(k)
m−2 −H(t(k))[w(k), x(k);F ]−1F (z

(k)
m−2),

x(k+1) = z
(k)
m−1 −H(t(k))[w(k), x(k);F ]−1F (z

(k)
m−1),

(1)

where t(k) = [w(k), x(k);F ]−1[z
(k)
1 , v(k);F ], being w(k) = x(k) + βF (x(k)) and

v(k) = z
(k)
1 + δF (z

(k)
1 ).
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The semilocal convergence when the matrix weight function is H(t(k)) =

t(k)
−1

for this family is studied in [5], where, in addition, several numerical ex-
periments and dynamical planes are performed to see and study the behaviour
of different elements of the family by changing the values of the parameters.

What we will show next is the efficiency index of the elements of the family
when a system with size n is solved, in order to see if by increasing the number
of steps the efficiency of the methods becomes worse, knowing that the family
has order 2m as long as m is the number of steps that the method has and the
weight function satisfies that H(I) = I and H ′(I) = −I, where I is the identity
matrix.

2 Efficiency index

We will now look at the computational cost of comparing the efficiency of using
more steps. We will use the concept of efficiency, which is usually measured by
the efficiency index, defined in [7]:

I = p

1

d ,

where p is the order of convergence and d is the number of functional evaluations
per iteration.

This comparison criterion is very useful as it establishes a relationship be-
tween the order of convergence of a method and the number of functional eval-
uations it performs per iteration.

For a system of size n× n,

– n functional evaluations are required for a vector function F ,

– n2 functional evaluations for a Jacobian matrix JF ,

– and n2−n functional evaluations for a first order divided-difference operator
of the form [x, y;F ] (see [8]).

In this article, we make use of these concepts to calculate the efficiency index
of the iterative family without memory (1) as a function of the number of steps
m it performs.

– For m = 1, it performs an evaluation of F and calculate a divided difference
operator, so the total number of functional evaluations is n2. Therefore, the
efficiency index is:

2

1

n2 .
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– For m = 2, it performs two functional evaluations of F and two divided
difference operators, so the total number of functional evaluations is 2n2.
So, the efficiency index is:

4

1

2n2 = 2

1

n2 .

– For m > 2, it performs m functional evaluations of F and two divided
difference operators, so the total number of functional evaluations is 2n2 +
(m− 2)n. The resulting efficiency index is

Im = (2m)

1

2n2 + (m− 2)n .

Fig. 1: Efficiency rates when the system size is 100.

The efficiency indices for solving a system of size 100 × 100 are shown in
Figure 1. It can be seen in this figure that methods that perform the most or
the least steps are not those that obtain the highest efficiency rates. From [3],
we obtain that the number m that maximizes the efficiency index is m∗ ≈ 53.82.
Therefore, we must compare the values obtain for m− = 53 and m+ = 54. In
this case, I54 > I53, therefore, the number of steps that obtains higher efficiency
index is 54.

3 Numerical experiments

In this section, first, we apply the multistep methods Mβ,δSm to a nonlinear
system to verify that the properties deduced theoretically in the analysis of the
family are satisfied, both with and without memory.
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We want to approximate the solution of the following nonlinear system with
n equations and n unknowns

Fi(x) = xi sin(xi+1) = 1, i ∈ {1, . . . , n− 1}
Fn(x) = xn sin(x1) = 1.

The approximate solution of this system is α ≈ (1.11416, . . . , 1.11416, . . .)T ,
which we try to approximate using the methods Mβ,δSm, for different values of
m.

For the computational calculations we use MATLAB R2022a, using variable
precision arithmetic with 5000 digits, iterating from an initial estimate x(0) =
[1.3, . . . , 1.3]

T
until the following stopping criterion is satisfied:

|x(k+1) − x(k)∥2 + ∥F (x(k+1))∥2 < 10−300

and the approximated computational order of convergence (ACOC), defined by
Cordero and Torregrosa in [4].

Table 1 shows the results obtained by the above methods to solve the system,
taking n = 15 and assuming that the weight function of the family of methods
has the expression H(t(k)) = 3In − 3t(k) + (t(k))2.

The data we compare in Table 1 symbolize, from left to right, the multistep
methods used for different steps m = 1, 2, 3, the distance between the last two
iterations, the value of the function evaluated in the last iteration, the number
of iterations needed to verify the stopping criterion, the approximate computa-
tional convergence order defined in [4] and the time it takes for each method to
find an approximation to α, satisfying the required tolerance.

Method ∥x(k+1) − x(k)∥ ∥F (x(k+1))∥ Iteration ACOC Time

M0.1,0.1S1 6.32894× 10−439 6.95714× 10−879 9 1.99999 43.1406
M0.1,0.1S2 2.83143× 10−508 1.74600× 10−2036 5 3.99999 55.0469
M0.1,0.1S3 7.33069× 10−408 1.23838× 10−2452 4 5.99999 42.7188

Table 1: Numerical results for M0.1,0.1Sm with m = 1, 2, 3.

It is easy to check in Table 1 that, in this case, the method that performs
three steps needs less iterations than the other to satisfy the required tolerance
and the computational time is fewer or equal to the others. In all the case, the
ACOC matches the theoretical order of convergence expected.

4 Conclusions

In this paper, we show the efficiency index of a derivative-free multi-step para-
metric family with matrix weight function, in order to illustrate that in certain
occasions, although some iterative methods need more functional evaluations,
they are more efficient if the size to be solved is large.



Parametric family of derivative-free multi-step vectorial methods 337

4.1 Financial support

This research was partially supported by Universitat Politècnica de València
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Abstract

Abstract. The Choquet integral was developed in 1954 by Gustave
Choquet [7]. It was later applied in decision making under uncertainty
since the pioneering work of Schmeidler [12], who proved its most popu-
lar characterization. However it was not used for multi-criteria decision
aid (MCDA) till the decade of the 1990s [10]. Nowadays many gener-
alizations exist [8], and the topic is the subject of intense research and
development in many areas [2, 11,13].
In this chapter we narrate our experience with ChatGPT as an assistant
to explore the utilization of the discrete Choquet with Mathematica, and
to write a Beamer presentation with our findings. The goal of this exercise
is to prepare the ground for the application of the discrete Choquet
integral to N -soft sets [9].

Keywords: capacity; Choquet integral; N -soft set; ChatGPT.

1 Introduction

The focus of this chapter is the Choquet integral, particularly, its discrete ver-
sion. This integral is defined with respect to a very important class of non-
necessarily additive set functions called Choquet capacities, or fuzzy measures,
after the work of Choquet [7]. In this chapter the sets that we explore are all
finite although of course, a continuous version of the Choquet integral exists. In
fact Schmeidler [12] produced a characterization of this monotonic functional,
inspired by the foundations of Bayesian decision theory. Indeed, just like proba-
bility has its foundation in measure theory, degrees of belief are generalizations
of probability that have their foundation in capacity theory. In formal terms,
capacities provide a generalization of measure theory that dispenses with any
additivity requirement.

Despite this motivation it is important to emphasize that originally, capac-
ities were not meant to encapsulate a general type of uncertainty. Instead, in
their inception their main applications were targeted to potential theory. How-
ever, capacities soon found applications in other fields like stochastic processes.
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And they have been applied to multi-criteria decision aid (MCDA) since the
decade of the 1990s [10].

To understand their semantics, two main interpretations of the figures given
by a capacity are especially valuable. The first one conceives capacities as a
representation of the importance of the elements of a set. It may be a set of
properties in the framework of MCDA, or a set of agents with their own degree
of expertise in the context of group decision making. Under the second interpre-
tation, we are concerned with the uncertainty of events. In this case the value
assigned to a set quantifies the uncertainty that this set contains the result of
an event (for example, an experiment).

As for technicalities, the next section describes the components and definition
of the discrete version of the Choquet integral.

2 The discrete Choquet integral

Let us fix X = {1, . . . , n}. X may represent either a set of n properties (in
MCDA) or experts (in group decision making), or the results of an event with
n possible outcomes, depending on the intended application. We will not be
concerned with the later interpretation here.

Definition 2. A discrete fuzzy measure (or capacity) is a mapping µ : 2X −→
[0, 1] that is monotonic (this means µ(S) ⩽ µ(T ) whenever S ⊆ T ⊆ X), and it
is such that µ(∅) = 0 and µ(X) = 1.

The requirement µ(X) = 1 means that the capacity is normalized. Some stud-
ies dispense with this property in the definition of capacity.

The capacity satisfies additivity if when A,B ⊆ X are disjoint subsets, it
must be the case that µ(A∪B) = µ(A)+µ(B). Note that additive set functions
are uniquely determined by n (instead of 2n) values, namely, µ(1), ..., µ(n). In
addition, any additive discrete capacity is a probability measure. This observa-
tion crucially hinges on the fact that the capacity is normalized (i.e., that it
satisfies µ(X) = 1).

We say that there are synergies between A and B, disjoint subsets of X,
with respect to µ when µ(A∪B) > µ(A)+µ(B). There is redundancy between
A and B when µ(A∪B) < µ(A) +µ(B). And there is no interaction between A
and B when µ(A ∪B) = µ(A) + µ(B).

Capacities for which there are synergies (resp., redundancies) between every
pair of disjoint non-empty subsets of X are called superadditive (resp., subaddi-
tive).

If µ(A) = µ(B) for every A,B ⊆ N with the same cardinality, then the
capacity µ is symmetric.

We are ready to define the main concept in this chapter:

Definition 2. The discrete Choquet integral with respect to µ, a discrete ca-
pacity on X, a set with n elements, is the function Cµ : Rn −→ R defined as
Cµ(v1, . . . , vn) =

∑n
i=1

[
v(i) − v(i−1)

]
µ(Hi), where the vector v↗ = (v(1), . . . , v(n))

is a non-decreasing permutation of v = (v1, . . . , vn), with the convention v(0) = 0.
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In this formula, we let Hi = {(i), . . . , (n)} be the set of indices that correspond
to the largest n− i+ 1 components of v.

In case that µ is a symmetric capacity, Definition 2 produces an OWA oper-
ator [14]. OWA holds for “ordered weighted average”. To apply this operator, a
fixed set of weights produces the weighted averages of the ordered values of the
vector of values. By contrast, Definition 2 is more general because it produces
a weighted sum of successive increments, with weights computed by the capac-
ity (of the subsets of attributes that guarantee the respective increments in the
non-decreasing vector of evaluations).

Figure 1 summarizes the computation of the value assigned by the Choquet
integral to the vector of values (2, 9, 6). It is expressed as a function of the values
of a capacity on a set of 3 properties. The computations are

Cµ(2, 9, 6) = 2 · µ({1, 2, 3}) + 4 · µ({2, 3}) + 3 · µ({2}).

Fig. 1: A visual presentation of the computations leading to the evaluation of a three-
dimensional vector (2, 9, 6) by a Choquet integral.
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3 Exercises assisted by ChatGPT: a failed attempt

If one needs to write a more complete example of the application of the Choquet
integral, then a handicap is that the definition of the capacity is computationally
costly. Note that one needs to define 2n figures, n being the number of properties
or experts listed in X. In addition, these figures must meet the requirements of
Definition 2. The problem of producing capacities randomly has been the sub-
ject of interesting analysis such as Beliakov and Wu [6]. This section explores the
possible utilization of ChatGPT to produce capacities on sets of small cardinali-
ties. A brute-force algorithm can surely get it in little time, and this is probably
what we expected from ChatGPT. Let us narrate what happened.

Figures 2 and 3 show selected pieces of a conversation with ChatGPT-3
attempting to solve this problem.

First we asked if ChatGPT can help us to solve problems involving the Cho-
quet integral, The answer was affirmative. In fact, ChatGPT asked if more details
could be provided about our specific problem. Emboldened by this enthusiastic
answer, then we asked if ChatGPT could write Mathematica code for the gen-
eration of a fuzzy measure on a set with only 4 elements. Again, the answer was
affirmative. But despite its acclaimed abilities for the production of high-quality
code, the result was rather disappointing. Especially, because the explanation
(and the code) that ChatGPT produced ignored the monotonicity requirement
altogether. Figure 2 shows this piece of the conversation between the user and
ChatGPT.

Figure 3 shows how this conversation unfolded as we tried to clarify the mat-
ter. First we asked whether the fuzzy measure produced with the Mathematica
code was forcefully monotonic. Not only ChatGPT assured that this was the
case, but also it added a complicated explanation involving the Sugeno integral
as the germ of the construction of the capacity. We retorted that we had no hint
that the Sugeno integral was used in the algorithm, and also that we had run the
code and the result was not monotonic. ChatGPT apologized but insisted that
it could still use the Sugeno integral to produce the code that we had requested.

In the end, we gave up. The only part of the code that we could make use of
concerned the generation of the list of subsets of our set (one line of code).

Remark. Mathematica users should know that the Wolfram Function Reposi-
tory hosts a “ChoquetIntegral” function. It can be downloaded from the URL

https://resources.wolframcloud.com/FunctionRepository/resources/ChoquetIntegral/

According to the description provided, “ChoquetIntegral” calculates numeri-
cally the Choquet integral of a function with respect to a probability distribution.
Hence we cannot use the full force of this aggregation operator because we need
to use additive (and normalized) capacities.

https://resources.wolframcloud.com/FunctionRepository/resources/ChoquetIntegral/
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Fig. 2: First part of conversation with ChatGPT-3.
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Fig. 3: Second part of conversation with ChatGPT-3.
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4 Intended applications

Our interest in the exercises described above lies in the fact that the field of
N -soft set theory appears to be a perfect fit for the application of the discrete
Choquet integral in various ways.

Let us first explain that soft sets over a set extend its subsets with the
help of several simultaneous characteristic functions. Under the most common
interpretation, each characteristic function is associated with one of the several
characteristics that explain the alternatives in our model. However many real
situations can convince us that quite often, alternatives are better characterized
in terms of their properties if there are several grades that quantify how satisfied
we are for every feature. With this motivation, N -soft sets were defined by
Fatimah et al. [9] in order to improve the informational ability of the soft set
model. To understand its possibilities, Alcantud [1] has discussed the semantics
of N -soft sets recently.

In practical terms, an N -soft set can be presented by Table 1 when both the
set of options U = {o1, . . . , op} and the set of properties X = {x1, . . . , xn} are
finite. Table 1 contains exclusively 0’s and 1’s if we have a soft set. In an N -soft
set, the vij values are numbers in the range {0, 1, 2, . . . , N − 1}. Real examples
that adopt this form have been given in articles such as [1, 3–5] among others.

Table 1: A general N -soft set on alternatives U = {o1, . . . , op} when the proper-
ties are X = {x1, . . . , xn}.

x1 x2 . . . . . . xn

o1 v11 v12 . . . . . . v1n

o2 v21 v22 . . . . . . v2n
...

...
...

. . .
...

op vp1 vp2 . . . . . . vpn

Within this framework, two direct applications of the discrete Choquet in-
tegral come to mind easily. Their practical implementation and respective com-
parative analyses are beyond the scope of this chapter.

First, the Choquet integral can be used to refine the evaluations of the al-
ternatives oi provided in articles such as [9], so that alternatives with higher
evaluations are preferred over alternatives with smaller values. In fact this ar-
ticle defined an extended weighted choice value that uses a vector of weights
for the properties. As explained above, OWAs and discrete Choquet integrals
produce a richer environment for the evaluations, since capacities are able to
rate not only individual attributes or experts, but also their combined influence
in the final assessment. The utilization of the Choquet integral in this context
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remains unexplored. It paves the way to considering attributes with synergies
or redundancies in N -soft set decision making, because capacities are able to
encapsulate these circumstances faithfully.

Secondly, Choquet integrals can be utilized to aggregate several N -soft sets
with equal sets of alternatives and attributes. Suppose for example that for the
evaluation of a decision situation, each N -soft set is submitted by an expert. The
capacity should be now designed to assess the abilities of the experts, in such way
that the capacity captures the possible existence of synergies or redundancies.
As of now, simpler methodologies that address this aggregation problem include
Alcantud et al. [4, 5].

5 Preparing the slides for our presentation

The slides presented at the conference were prepared manually. However, we
asked ChatGPT if it was able to suggest a Beamer theme with a layout similar
to the metropolis theme that we had used before for our presentations.

Figure 4 shows this piece of the conversation.
ChatGPT suggested not one, but five themes. Peculiarly, the first one was

called “Fira”. We knew the Fira typefaces but we were surprised to find out
that a Beamer theme existed with the same name. After several unsuccessful
searches with a powerful search engine, we asked ChatGPT what web page
shows information about the Fira theme. Peculiarly, the answer pointed at
https://ctan.org/pkg/fira Not surprisingly, this page of the CTAN repository
contains the Fira fonts with LATEXsupport.

https://ctan.org/pkg/fira 
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Fig. 4: Asking ChatGPT-3 what Beamer theme we should use for our presentation.
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Abstract. In previous work, we modeled a romantic relationship as an
optimal control problem, either one-person or two-person (differential
game), either in a deterministic or a stochastic environment –see [12], [8]
and [9]. In this note, we show how real data on happiness in roman-
tic relationships can be accurately approximated by our computational
models. We explain how to calibrate our model to fit the data. Relevance
and implications are discussed.

Keywords: Romantic relationships. Marital satisfaction. Parameter Es-
timation, Differential Games.

1 Differential games as successful romantic relationships

Understanding the success of long-term romantic relationships is a substantial
issue with huge implications for the well-being of individuals and society [3], [2].
The study of successful (long-lasting and happy) unions poses a challenging pro-
blem for the social sciences. In fact, despite many decades of scientific research,
what is required to build a successful relationship is not well understood [5], [4].
Our research program aims to understand the underlying dynamics and time
evolution of romantic relationships, particularly those that are successful, using
mathematical models. It began over a decade ago with the design of a romantic
relationship as an optimal control problem [12] –see also [13]. This love engineer-
ing approach was extended recently to account for a coupled two-person control
problem, i.e. a differential game, both in a deterministic and in a stochastic
environment –see [8] and [9], respectively.

The basics of our modeling of a romantic relationship as a stochastic differen-
tial game are as follows. The state of the relationship at time t ≥ 0 is monitored
by the (random) variable x(t), called feeling, where x : [0,∞) → X ⊆ R, X
being the state space. So x(t) gives a measure of relationship quality, or marital
satisfaction as often called in the literature. –see e.g. [1]. Now, the evolution of
the feeling variable obeys the following stochastic differential equation (SDE)

dx (t) = [−rx(t) + a1c1(t) + a2c2(t)] dt+ σ (x (t)) dw, (1)

where r, a1, a2 > 0 are parameters, ci : [0,∞) → R+, i = 1, 2, are (piece-
wise) continuous functions that represent the effort that each partner puts into
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the relationship over time, and w(t) is a Wiener process (see e.g. [10]). In the
scheme of control theory, ci(t) are control variables that govern the evolution of
the state variable x(t), given r, a1, a2, σ. According to [5], equation (1) may be
called the second law of thermodynamics for romantic relationships. In case that
σ(·) = 0, equation (1) is a deterministic differential equation. We will consider
both the stochastic and deterministic versions of the second law for our analysis
below.

Effort controls defined by ci = Si (x) , with Si : X → R+, are of particular
interest here; they are called feedback controls (or strategies) . Feedback controls
allow partners to decide how much effort to exert at any time t observing the
state of the relationship x(t). We assume that both partners independently seek
to maximize their total (expected) happiness throughout the duration of the
relationship, which is the aggregate difference between the benefits derived from
the level of feeling –measured by certain functions Ui(x)- and the costs of exerting
effort –given by suitable functions Di(ci). Formally, the expected happiness of a
partner i, i = 1, 2, is given by

E
[∫ ∞

0

e−ρit (Ui (x (t))−Di (ci1 (t) ; c
∗
i )) dt|x(0) = x0

]
,

where ρi is a discount parameter accounting for impatience, and the parameter
c∗i indicates the level of effort that partner i is most happy to make. More
specifically, c∗i is the absolute minimum of the cost function Di, which is assumed
to be differentiable and strictly convex. Also, Ui is assumed to be differentiable,
increasing, and strictly concave. These mathematical properties are derived from
principles in human psychology (see [12] for the details). In the deterministic
case, there is no need to include the operator E (·), as the functional objectives
are no longer probability distributions.

The relationship follows an equilibrium when there is a pair of optimal feed-

back controls
(
S♡
1 (·) , S♡

2 (·)
)
, that is, S♡

1 (x (t)) solves

max
c1(t)

E
(∫ ∞

0

e−ρ1t (U1 (x (t))−D1 (c1 (t) ; c
∗
1)) dt|x(0) = y

)
with dx (t) =

[
−rx(t) + a1c1(t) + a2S

♡
2 (x (t))

]
dt+σ (x (t)) dw, and, also, S♡

2 (x (t))

solves

max
c2(t)

E
(∫ ∞

0

e−ρ2t (U2 (x (t))−D2 (c2 (t) ; c
∗
2)) dt|x(0) = y

)
with dx (t) =

[
−rx(t) + a1S

♡
1 (x (t)) + a2c2(t)

]
dt + σ (x (t)) dw, where x(0) =

y ∈ X is the initial feeling state and ci(t) ∈ R+ for t ≥ 0. Such a pair(
S♡
1 (·) , S♡

2 (·)
)
is called a (stationary) feedback Nash Equilibrium for the rela-

tionship. Once the feedback controls of the problem are obtained, the optimal
effort (random) paths are given by c♡i (t) = S♡

i (x(t)), i = 1, 2, and the feeling
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trajectory of the relationship x♡(t) is found by solving the SDE

dx (t) =
[
−rx(t) + a1S

♡
1 (x (t)) + a2S

♡
2 (x (t))

]
dt+ σ (x (t)) dw,

for the initial state x0 ∈ X. For a detailed presentation of the formulation above
we refer to [8] –see also [12].

Finding feedback controls for a couple’s relationship is far from trivial and,
typically, only approximate solutions can be obtained from computational meth-
ods. We will use the RaBVItG algorithm, recently introduced by [7], to compute
numerical feedback Nash equilibria for our problems.

2 Successful romantic relationships as differential games

It is shown in [8] and [9] that RaBVItG can efficiently solve computational ver-
sions of the differential game models described above. The synthetic trajectories
of feeling and effort provided by the algorithm are useful to investigate qual-
itative properties of romantic relationships in the long term. The purpose of
this note is to show that our computational models can indeed replicate actual
trajectories of marital satisfaction. Specifically, we will show how the model can
approximate a representative trajectory xdata(t) obtained from the data set of a
questionnaire recently published in [15]. As a by-product of the model approx-
imation, our analysis produces effort control paths and happiness trajectories,
which are relevant to understanding the dynamics of genuine successful relation-
ships.

Notice that the scheme in the above section -either deterministic or stochastic-
amounts to finding feedback controls and feeling trajectories for a set of hyper-
parameters. Assume that functions Ui, Di, for i = 1, 2, are defined and are fixed
for the sequel. Our computational scheme acts as a mapping

P := (r, a1, a2, σ, c
∗
1, c

∗
2) 7→ (c♡1 (t), c

♡
2 (t), x

♡(t)).

Essentially, our goal is to solve an inverse problem, that is, to find the set of input
parameters P̂ that produces the best approximation x̂♡(t) of the computational
model –solved by RaBVItG– to the observed sequence xdata(t). We consider
both deterministic and stochastic versions of the differential game model. Next,
we first describe the data set and the target trajectory xdata(t), then we present
the method for obtaining the best approximate solution of the model. In the
third section, we discuss the result of our analysis.

2.1 Data

The target trajectory xdata(t) represents the marital satisfaction of a success-
ful union over 30 years. It is synthesized from raw data gathered in the recent
study [15], which is a large cross-cultural study, covering five regions of the world,
which took place over a short period (2012-2013). The questionnaire, known as
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the Kansas Marital Satisfaction Scale (KMSS) (see [11, 14]), evaluated marital
happiness among approximately 7000 couples from 33 different countries. The
questionnaire consisted of three questions: “How satisfied are you with your mar-
riage?”; “How satisfied are you with your wife/husband as a spouse?”; and “How
satisfied are you with your relationship with your wife/husband?”. Participants
responded to these questions using a 7-point scale with higher values indicating
greater marital satisfaction, from 1 (very dissatisfied) to 7 (very satisfied). For
our study, we defined a measure of marital satisfaction (MMS) for each relation-
ship as the sample average of the responses to the three questions above. So,
MMS can be considered a proxy for the feeling variable in our model. The dura-
tion t of each relationship to date, measured in years, was considered to define
the target trajectory at moment t, which is represented in red in Figure 1. To
create this figure, we calculated the mean and standard error of the MMS in the
sample of relationships each year. In our study, the target trajectory is xdata(t),
which is representative of the general trend of marital satisfaction around the
world. This is represented in Figure 1 by the smoothed red line, which is obtained
from the data points by local averaging.

Fig. 1: Marital satisfaction and duration of marriage –derived from the data set
in [15]. The shaded area represents the 95% confidence interval for the population
mean of the MMS obtained from the data. The target trajectory xdata(t) is the
smoothed red line obtained by locally averaging the MMS data points. The
smoothing has been obtained with the R package ggplot2. The second graph
shows the histogram of the duration of marriages (in years) in the sample. The
first and third quartiles are plotted in blue, while the median is on the red line.

Figure 1 shows that 75% of relationships have a duration of less than 25 years.
This fact influences the accuracy of measuring the central effect and therefore
affects the variability shown in the vertical range of the shaded area. The evolu-
tion of marital satisfaction is described by the smoothed red trajectory: it starts
at its maximum value 6.12 (in a range of 0–7) and decreases sharply during the
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first ten years. It then continues to decline at a slower rate until it reaches a
plateau. The shape of the red curve appears to be the typical pattern of marital
satisfaction over time. It has been previously obtained with different samples and
different time periods –see [1,16]. Furthermore, the shapes of the feeling trajecto-
ries generated by our computational models, both deterministic and stochastic,
are qualitatively similar to that of the curve xdata(t). This suggests that our
model could be calibrated, by finding the appropriate set of input parameters,
such that the computed feeling trajectory x̂(t) is a good approximation to the
data set xdata(t). Next, we explain how this approximation can be obtained.

2.2 Model calibration

As mentioned above, the benefit and cost functions Ui and Di, i = 1, 2, are fixed
and will be defined below. Our goal is thus to find a set of input parameters
P̂ such that the corresponding feeling trajectory x̂♡(t) computed by the model
(approximately) replicates the target trajectory xdata(t).

Recall that, given the set P = (r, a1, a2, σ, c
∗
1, c

∗
2) and x(0), the algorithm

RaBVItG finds a feedback Nash equilibrium
(
S♡
1 (·) , S♡

2 (·)
)

of the computa-

tional model –either deterministic or stochastic– that defines the feeling trajec-
tory x♡(t) along with the effort control paths c♡i (t) = S♡

i

(
x♡(t)

)
, i = 1, 2.

Given P , let us write x♡d (t) := d − RaBVItG[P ] for the feeling trajectory
of the deterministic model computed by the algorithm RaBVItG in [8], and
x♡s (t) := s − RaBVItG[P ] for the feeling trajectory of the stochastic model
computed by the version of RaBVItG in [9].

Now, the best approximation of the deterministic model is obtained by solv-
ing the optimization problem

min
P

1

M

M∑
k=1

[(xdata (k)− x♡d (k)]2

with x♡d (t) := d− RaBVItG[P ], and xd(0) = xdata(0).

Similarly, the best approximation of the stochastic model to the target tra-
jectory xdata(t) is obtained by solving the optimization problem

min
P

E(
1

M

M∑
k=1

[xdata (k)− x♡s (k)]2)

with x♡s (t) := s− RaBVItG[P ], and xs(0) = xdata(0).

Notice that the target trajectory {xdata(t) : t = 1, ...,M} consists of a discrete
sequence of M values, one for each year. In our study, it is M = 30. The best
approximations are thus obtained by minimizing the mean squared error between
the observed data and the trajectories computed by RaBVItG.
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3 Results and discussion

Here we present the solutions for the minimization problems described in the
previous section. We assume that U1 = U2, D1 = D2, ρ1 = ρ2, a1 = a2, and
c∗1 = c∗2. This type of relationship is called homogamous in the literature of
marital psychology [17]; they are formed by individuals who are similar to each
other. This is a natural assumption given that the data set [15] is obtained by
collecting answers from one of the partners in each relationship.

We also assume that the benefit and cost functions are defined by

Ui(x) = 5 ln (x+ 1) ; Di (ci) =
1

2
(ci − c∗i )

2
, for i = 1, 2.

These functions satisfy all the mathematical properties derived by psychological
principles -see [12] for the details. This particular choice was first considered
by [12] and it was also adopted in [8] and [9].

To find the minimizers P̂d and P̂s of the deterministic and stochastic ap-
proximation problems above we run an extensive routine to compute the mean
squared error between the data xdata(t) and the outputs d − RaBVItG[P ] and
s−RaBVItG[P ] for each feasible set P . We restricted the search for r×ai×c∗i ×σ
within the parameter domains

r ∈ [0.01, 0.3], ai ∈ [0.01, 0.07] , σ(·) ≡ σ ∈ [0, 1], c∗i ∈ [0, 10] .

These domains have been chosen after running several preliminary numerical
tests, given that x(t) ∈ X = [1, 7] for t ∈ [0, 30]

The results obtained for the approximation problems are given in Table 1.
The rate of decay of the feeling r, the effort coefficients ai, and the effort levels
c∗i , i = 1, 2, are similar for the deterministic and stochastic solutions. Also, the
error is similar in both cases. As a measure of goodness of fit, the last column
shows the linear correlation of the observed data xdata(t) with the deterministic
approximation x♡d (t) and with the mean of the stochastic approximation x♡s (t).
The correlation values show a remarkable agreement between the data and the
model approximations both deterministic and stochastic. The linear correlation
between the deterministic and stochastic (mean) approximations is 0.9988. This
good agreement can be observed in the first panel of graphs in Figure 2, where
both data and approximation curves are displayed. Our procedure also provides
the effort control policies, deterministic c♡d,i(t) and stochastic c♡s,i(t) which, our
study, are the same for both partners in each case. They are represented as
the extra effort relative to the preferred effort level c∗i (in percentage), that is,
c♡d,i(t)−c∗i

c∗i
× 100 y

c♡s,i(t)−c∗i
c∗i

× 100. These (extra) effort curves are plotted below

the feeling curves in Figure 2. In both cases, the effort levels increase over time
with respect to the reference value c∗i until reaching a plateau. This is a typical
pattern of effort curves in our differential game models, already found in the
numerical analysis, both deterministic [8] and stochastic [9].
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Fig. 2: Successful romantic relationships as differential games. The first panel
shows the actual data xdata(t) of marital quality (the target trajectory) together
with the best approximations –deterministic (left) and stochastic (right)– ob-
tained by the differential game models. These feeling trajectories are the solu-
tions of the model obtained by the RaBVItG algorithms for the set of input
parameters in Table 1. The approximation is obtained by minimizing the mean
square error. The second panel shows the corresponding effort policies of both
partners –deterministic (left) and stochastic (right)– that control the dynamics
of the feeling. They are represented as the extra effort relative to the estimated
level c∗i (in percentage). Extra effort is required to maintain a relationship suc-
cessful in the long term.

Table 1: Parametric estimates of the best model approximation for xdata, along
with mean square error (MSE) and linear correlation (corr).

r a1 = a2 c∗1 = c∗2 σ MSE corr

Deterministic 0.182 0.053 9.40 0 0.5129 0.8122

Stochastic 0.179 0.050 9.80 0.50 0.5135 0.8032
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4 Conclusions

The computational differential game models introduced in [8] and [9] produce
long-term feeling trajectories of successful romantic relationships. Since the mod-
els build on well-known psychological assumptions, these synthetic trajectories
may serve as a proxy for observed variables like marital satisfaction or marital
quality. The numerical analysis of these models is useful to explore significant
questions of the dynamics of romantic relationships, if only qualitatively.

To address issues relevant to the proper functioning of real relationships, the
models must be calibrated, that is, find a parametrization that replicates the
observed data on marital satisfaction. In this note, we show that the models
can be calibrated to replicate an actual trajectory of marital satisfaction data
over 30 years. This target trajectory is extracted from a data set of a recent
cross-cultural study, with 7,000 subjects from 33 countries [15]. The calibrated
trajectories –either deterministic or stochastic– show a remarkable correlation
with the target trajectory of data.

Once the model is adjusted to replicate real data, many quantitative explo-
rations of the functioning and evolution of a real relationship can be carried
out. For example, a main variable of the model, namely the effort required to
maintain a long-lasting happy relationship can be estimated with our computa-
tional approach. The happiness that both partners derive from their romantic
relationship can also be estimated and compared with other types of relation-
ships. In addition, the study in this note on homogamous couples –formed by
similar partners– can be used to analyze the effect of dissimilarity –heterogamy–
on the relationship dynamics, for instance, the response in effort making or the
happiness of different partners. The impact of an external shock on satisfaction
or effort policies, as well as the risk of rupture and probability of recovery, can
also be estimated by the computational model using real data. These and other
intriguing questions stimulate our work in progress.
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Abstract. In this work, statistics of the maximum and minimum limits
that a victim of domestic violence can suffer in a cycle of violence at the
hands of his perpetrator are estimated. The estimates are obtained from
a mathematical model proposed in the literature that takes a violence
risk questionnaire. The results are shown in Tables of simple descriptive
statistics, as well as in storyboards where the probable scenarios of vio-
lence that the victim could experience over twelve months are graphically
shown. These results could serve as monitoring tables (traffic lights) to
researchers and experts in the area of violence in order to establish prob-
able protocols and decision-making to help victims of domestic violence.

Keywords: domestic violence, risk levels, statistics, questionnaire

1 Intimate Partner Violence

Violence (”violence is the intentional use of threatened or actual physical force
or power, against oneself, another person, a community or a group, that may
result in a high likelihood of psychological harm, death, injury, deprivation or
maldevelopment” [1]) is a major public health problem that afflicts all societies
worldwide [2]. Specifically, violence against women is of significant importance
to international organizations and leading human rights groups (violence against
women is defined by the United Nations as “any act of gender-based abuse that
results in, or is likely to result in, physical, sexual or psychological harm or suf-
fering to women, including threats of such acts, coercion or arbitrary deprivation
of liberty, whether occurring in public or in private life” [3]) [4]. Violence against
women does not respect social class, race, age or religious beliefs [5]. Statistics
show that, in 75% of the cases, a man is identified as the perpetrator of such
violent acts and a woman as the victim. In most countries, programs to monitor
cases of violence and to assist the victim have been established. These programs
are estimated to last between one and two years [4].

The monitoring programs begin with the application of a violence risk ques-
tionnaire. This questionnaire is applied by the violence experts (social workers
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from the domestic violence care center), in which the initial violence risk level of
the victim taking into account four dimensions: psychological violence, physical
violence, severe physical violence and sexual violence [6]. The way to obtain this
measurement is through a linear equation (see for example [7] y [8].); however,
only a small number of victims seek help, advice, emotional support and in-
formation to find a solution to the cycle of violence they are experiencing, for
example only the 21% [9])) of adolescents immersed in domestic violence seek
help.

With these premises and in order to help experts in this field make decisions
based on predictive data on risk levels, this article provides simple statistical
tables of risk levels by dimension of violence (psychological / physical / sexual),
as well as storyboards with which they are intended to provide quantitative and
qualitative tools in cycles of domestic violence [10]).

For this, in this article the work is divided into the following sections:

– Questionnaire: an example of a risk questionnaire is provided with the four
dimensions of violence with their severity weights for each question and
obtaining their initial conditions of violence by dimension.

– Statistical simulation model: simple statistical risk prediction tables are gen-
erated for two cycles of violence, taking as premises the initial conditions of
the risk questionnaire.

– Discussion and Conclusions: violence prediction storyboards based on sta-
tistical simulation models and a discussion of the use of violence prediction
tables are shown in this article.

2 Questionnaire

The first part to obtain the level of risk of the victim in a cycle of violence is
the application of a questionnaire that evaluated the dimensions of domestic
violence (for this article a questionnaire of 18 questions selected from the in-
struments of ”Spouse Abuse (ISA) ”and “Severity of Violence Against Women
Scale (SVAWS)” [11], [12]), psychological violence (Dimension I), physical vio-
lence (Dimension II), severe physical violence(Dimension III) y sexual violence
(Dimension IV).This questionnaire is shown in Table 1, which takes as param-
eters: the severity weight ωn that is assigned to each question (violent actions
that the perpetrator may have whose method of assigning these weights is by
expert judgment [6] [7]) and the frequency of violent acts carried out by the
perpetrator towards his victim fn (the frequency values are discrete assigned as
follows: 0=never, 1= sometimes, 2=several times and 3=many times).

2.1 Measurement of the initial condition of violence

After that, both frequency and weight must be assigned to each one of the items
fn and ωn, consequently, the level of violence Ωn can be calculated by using the
following equation [13] [14]:
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Table 1: Violence Risk Questionnaire

.

n Question Weight Ωn(0)

ωn
fn
0

fn
1

fn
2

fn
3

1
Has he ever told you that you are not
attractive or that you are ugly?

4.5 0 4.5 9 13.5

2
Has he ever displayed jealousy towards
you or become suspicious of your friends?

4 0 4 8 12

3 Has he ever rejected you? 5 0 5 10 15

4 Has he ever offended you? 4 0 4 8 12

5
Has he ever made you feel worthless
in front of other people?

5.5 0 5.5 11 16.5

Indicator of
psychological violence

ΩI(0) 0 23 46 69

6 Has he ever kicked you? 8 0 8 16 24

7 Has he ever pushed you intentionally? 5 0 5 10 15

8
Has he ever beaten
you or slapped you on your face?

7 0 7 14 21

9 Has he ever twisted your arm? 6.5 0 6.5 13 19.5

10 Has he ever pulled you forcefully? 5 0 5 10 15

Indicator of
physical violence

ΩII(0) 0 31.5 63 94.5

11
Has he extinguished
a cigarette on your body or burned
you with any other item or substance?

6 0 6 12 18

12
Has he ever threatened you with a gun or
any other type of firearm?

6.5 0 6.5 13 19.5

13
Has he ever shot at you with a gun or
any other type of firearm?

9.5 0 9.5 19 28.5

14 Has he ever threatened you with a knife? 7 0 7 14 21

15
Has he ever tried to drown you
or suffocate you?

9.5 0 9.5 19 28.5

Indicator of
severe physical violence

ΩIII(0) 0 38.5 77 115.5

16
Has he ever forced you to engage
in sexual intercourse?

6 0 6 12 18

17
Has he ever used physical
force to have sex?

9 0 9 18 27

18
Has he ever threatened you with leaving
you for other women if you do
not agree to engage in sexual intercourse?

4 0 4 8 12

Indicator of
sexual violence

ΩIV (0) 0 19 38 57

Initial condition of
global violence

Ω(0) 0 112 224 336

Ωn (0) = ωn (0)× fn(0), (1)

where fn(0) = 0, 1, 2, 3 and ωn(0) are the frequency of violent acts and the
weights of severity associated with each question in the questionnaire see Table
1. For example, in the event that a perpetrator has offended his victim many
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times (fn = 3)(see question n = 4), their associated severity weight is ω4 = 4),
therefore from (1) we obtain that the initial condition of violence is [6]:

ΩI
4 (0) = ω4 (0)× f4(0) = 4× 3 = 12. (2)

Note, in equation (2) the dimension of violence is set as a superscript. There-
fore, the calculation of the level of initial violence of the victim Ω(0), considering
factors I, II, III and IV (where the corresponding dimension has already been
assigned to every single question a factor analysis to identify the grouping of the
variables that best explain each of the dimensions is usually conducted, obtain-
ing the relevant factors for each type of violence and also assigning a dimension
to each question [6].), is calculated by using the equation [6] [13]:

ΩI (0) =

p∑
1

ωn (0) fn(0)

ΩII (0) =

q∑
1

ωn (0) fn(0)

ΩIII (0) =

r∑
1

ωn (0) fn(0)

ΩIV (0) =

n∑
1

ωn (0) fn(0).

(3)

In equation (3) each of the four factors contained in the questionnaire to be
given to the victims is separated. Limits p, q, r and n are the questions to be
included to calculate the initial condition of violence by dimension (see Table
1). As an example, the following is noticed in in the questionnaire displayed in
Table 1 by dimension of violence and frequencies of violent acts.

2.2 Mathematical Model for Predicting Violence

After the violence questionnaire has been applied a prediction model can be
applied for the victim during the following twelve months by cycles of violence.
The initial condition (Ω(0) (see Table 1) is the starting point (see equations
(1)-(3)).

For this to be achieved, it is advisable to use the model proposed by Leal-
Enŕıquez E. [13]. This model is composed as follows:

Ω (k) = Ω (0)α(k) =

n∑
1

ωn(k)fn(k) +Θ(ωp, fp) (4)

where
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Θ(ωp, fp) =

m∑
p=n+1

ωp(k)fp(k) (5)

α(k) =

k∑
1

β(k), (6)

β(k) = ξ(k)× σ−(k), (7)

[
σ+ (k) σ− (k)

]
=
[
σ+ (0) σ− (0)

](1− λ) λ

µ (1− µ)

k

. (8)

and

Ω (0) ∼=
n∑
1

ωn(0)fn(0) (9)

Ω(0) represents the initial condition of violence that the victim experiences,
which may be approximately (9) applying a risk questionnaire including n ques-
tions (refer to Table 1 where n = 18). α(k) expresses the accumulated level of
violence displayed by the perpetrator. β(k) constitutes the probable proportion
of violence which may cause injuries to the victim. ξ(k) represents the amount
of loss of control that the perpetrator displays in a given cycle of violence. σ−(k)
y σ+(k) accounts for the respective loss of control of the aggressor and his self-
control level. Θ(ωp, fp) are the p number of questions which were not included in
the initial questionnaire applied to the victim when she arrives at the care center
for the first time, in order to assess the risk of violence. ωn and fn represent the
weight of severity and the frequency which is correlated to every single ques-
tion included in the risk questionnaire (refer to Table 1 ). 1-λ and 1-µ comprise
the respective prevalence shown by the perpetrator when preserving a state of
self-control or loss of control.

3 Simulated Statistical Model

From model analysis (4) it can be deduced that the maximum limits of domestic
violence by dimension for the violence risk questionnaire (see Table 1) are when
the man is violent σ−(k) = 1 (see (8)), this is true when the prevalence of out-
of-control state violence (1 − µ) = 1 and that the percentage of loss of control
of the perpetrator that results in violent acts ξ(k) = 1 (see (7)) for all months
k, substituting this into the equation (6) we have that the accumulation α(k) of
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Table 2: Maximum Statistical Results: violence.

Dimension
Initial Condition
of Violence, Ω(0)

Frequency,
fn = 3

Violence Risk
Prediction, Ω(12)

Psychological Violence
I

69 3 828

Physical Violence
II

94.5 3 1134

Severe Physical Violence
III

115.5 3 1386

Sexual Violence
IV

57 3 684

violence of the perpetrator for the last month is twelve. In the table 2 shows the
maximum statistical results in the event that a victim arrives at the care center
and has suffered a violent act from the three-frequency risk questionnaire (see
Table 1).

3.1 Simulation: tension-outburst-honeymoon

The following values of ξ(k) are values published in the literature [13] for the
tension-explosion-honeymoon cycle for percentages of loss of control of the per-
petrator that are reflected in violent acts [10] [13]):

ξ(k) = [0.3135 0.0763 0.2003 0.6556

0.9272 0.8406 0.6358 0.3424

0.8803 0.0450 0.0619 0.0794]. (10)

In Table 3 are shown the maximum statistical results for the frequency of
violent acts 1, 2 y 3.

3.2 Simulation: outburst-honeymoon-tension

The following are the values which are considered to determine the proportion of
loss of control by the perpetrator ξ(k). These can result in injuries or violent acts
towards the victim during a period of twelve months (data distribution for ξ(k)
is determined by considering a cycle of violence de outburst-honeymoon-tension,
occurring between a perpetrator of violent acts and the victim [10] [13]):

ξ(k) = [1 0.6 0.4 0.7 0.8 0.35

0 0.01 0.02 0.2 0.3 0.1] (11)

In Table 4 are shown the maximum statistical results for the frequency of
violent acts 1, 2 y 3.
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Table 3: Results for tension-outburst-honeymoon

Dimension
Initial Condition
of Violence, Ω(0)

Frecuency,
fn

Violence Risk
Prediction, Ω(12)

Psychological Violence
I

23 1 116.3409

Physical Violence
II

31.5 1 159.3365

Severe Physical Violence
III

38.5 1 194.745

Sexual Violence
IV

19 1 96.1077

Psychological Violence
I

46 2 232.682

Physical Violence
II

63 2 318.673

Severe Physical Violence
III

77 2 389.489

Sexual Violence
IV

38 2 192.215

Psychological Violence
I

69 3 349.023

Physical Violence
II

94.5 3 478.009

Severe Physical Violence
III

115.5 3 584.234

Sexual Violence
IV

57 3 288.323

4 Discussion and Conclusions

Statistical simulations (see Tables 2-4) clearly show that when a man is violent
σ−(0) = 1 (see (8)) and a proportion of that loss of control manifests itself
in some specific violent act (see 7 and Table I), all this is reflected in violence
towards the victim, whose value is estimated with a risk questionnaire that
indicates the initial condition of violence of the victim (9).

This initial condition of violence (see Table I) when substituting it in the
mathematical model given in the equations (4)-(9) generates tables of values
whose descriptive statistics (see Tables 2-4), which can be interpreted by experts
on the subject of violence in victim care centers.

As an example of this, we have Tables II-IV for two cycles of violence
that the victim could experience: outburst-explosion-honeymoon and explosion-
honeymoon and outburst. From Tables III-IV, it can be clearly seen that the
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Table 4: Results for outburst-honeymoon-tension

Dimension
Initial Condition
of Violence, Ω(0)

Frecuency,
fn

Violence Risk
Prediction, Ω(12)

Psychological Violence
I

23 1 103.04

Physical Violence
II

31.5 1 141.12

Severe Physical Violence
III

38.5 1 172.48

Sexual Violence
IV

19 1 85.12

Psychological Violence
I

46 2 206.08

Physical Violence
II

63 2 282.24

Severe Physical Violence
III

77 2 344.96

Sexual Violence
IV

38 2 170.24

Psychological Violence
I

69 3 309.12

Physical Violence
II

94.5 3 423.36

Severe Physical Violence
III

115.5 3 517.44

Sexual Violence
IV

57 3 255.36

outburst-explosion-honeymoon cycle, for all dimensions of violence, has higher
values than the cycle of violence that begins with explosion-honeymoon-tension.
This can help experts in violence that if they detect that a woman arrives at the
care center in that cycle of violence in the coming months requires help so that
she does not reach the maximum level of violence given in Table I, this can be
translated mathematically into the following equation:

ΩTOH(k) ≥ ΩOHT (k), (12)

where ΩTOH(k) is the risk of violence for the outburst-explosion-honeymoon
cycle and ΩOHT (k) is the risk of violence for the explosion-honeymoon-tension
cycle for k = 1, 2, . . . , 12 months.

Also from Table I, we have that the maximum levels of violence really occur
when ξ(k) = 1 throughout the cycle of violence, which means that for the victim
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not to suffer that maximum level of violence, the perpetrator should also receive
help to control his loss of control.

The maximum level of violence that a victim can suffer for a risk question-
naire that is applied is given by (taking into account that the maximum frequency
must be taken fn = 3):

Ω(k) = Ωmax(0)× 12, (13)

where

Ωmax(0) =

IV∑
j=I

Ωj(0) (14)

The equations (13) and (14) are valid for the other frequencies, but it must
be taken into account that the maximum that would be reached would be for
dimension I, II, III and IV (see Table I).

In Figure 1, shows a storyboard where what is presented in this article is
graphically observed.

Fig. 1: Storyboard: victim of violence

Violent Man
σ−(0) = 1

The violent
man accumulates
levels of violence

α(k)

A proportion of
loss of control can

become in acts violents
ξ(k)

Initial Condition
Ω(0)

The proposed model
Ω(k) intends to help
to victim showing the
levels of violence could
reach in the coming

months
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Abstract. Service of Admission and Documentation Clinic del Complex
Univer-sity Hospital of Santiago de Compostela, is the unit in charge
of the patients managament, whose main purpose it is to organize the
patient flow through the healthcare facility, and to process the clinic
documentation they generate. With the aim of providing tools for man-
aging the occupancy rate in the hospital units, in this work we will apply
different regression models to the data provided by the Fundaci on In-
stituto de Investigaci on Sanitaria (FIDIS), which contain infor-mation
of every admission during the period that goes from January 2016 to
No-vember 2021. The point of using the regression models we will adjust
during this work is, among others, to get the nature of some variables,
such as daily admis-sions or patient’s length of stay. The objectives of
this dissertation are to conduct a literature review of the methods that
are commonly used for modeling this type of response variables, and the
set up of different regression models that will al-low us to predict the
occupancy rate of a hospital unit, or an admission’s length of stay.

Keywords: GAM, Internal Medicine, Inpatiens, Discharges.

1 Introduction

Patients’ management is a non-clinical but essential area in any hospital. In
this one the Admitting and Medical Record Department oversees this area. Bed
management is a crucial task for this department, involving the constant moni-
toring of admissions and discharges, and the flow of patients within the hospital.
Developing an effective tool to predict different demands will improve hospital
response capacity deriving in increasing patient wellbeing.

2 Objective

The objectives of this study are to conduct a literature review of the methods
that are commonly used for modeling this type of response variables, and the
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set up of different regression models that will allow us to predict the occupancy
rate of a hospital unit, or an admission’s length of stay.

3 Materials and Methods

The data set we have used in this manuscript consist of a census of 188135
admissions in the period 2016 to 2020. For each department of interest, we have
built a data base in which, for every day of the time period 2016 to 2020, we
obtain the following variables: Day of the week; Month of the year; Number
of inpatients; Number of discharges; Number of occupied beds the day before;
Median length of stay on patients the day before; Number of inpatients the day
before; Number of discharges the day before; Difference between the number
of admissions the same weekday the week before and the admissions the day
before; Difference between the number of discharges the same weekday the week
before and the discharges the day before. To be able to predict bed availability
we have divided the problem in three different ones: modelling admissions, and
modelling discharges using regression methods, and get those results together to
model bed occupancy. Both, admissions, and discharges, are count variables, i.e.,
their possible values are only non-negative integers. This characteristic prevents
them to be used in any linear regression model, since at least two of its basic
assumptions (linearity and normal distribution of the error) would never be
fulfilled. Therefore, to analyse this type of response variables, more complex
regression models need to be used.

To be able to predict bed availability we have divided the problem in three
different ones: modelling admissions, and modelling discharges using regression
methods, and get those results together to model bed occupancy. Both, admis-
sions, and discharges, are count variables, i.e., their possible values are only
non-negative integers. This characteristic prevents them to be used in any linear
regression model, since at least two of its basic assumptions (linearity and nor-
mal distribution of the error) would never be fulfilled. Therefore, to analyse this
type of response variables, more complex regression models need to be used.

Avoiding parametric assumptions for the effect of explanatory variables, we
have focussed on the Generalized Additive Models (GAMs), presented by [2].
GAMs blend the properties of GLMs and Additive Models (AMs), which were
first introduced by [1]. AMs assume that the relationship between the response
variable, Y , and a collection of explanatory variables, X1, . . . , Xp, can be written
as follows:

Y = β0 +

p∑
j=1

fj(Xj) + ε, (1)

where the functions fj represents the partial effect of the explanatory variable,
Xj , on the response variable, Y . These models, despite being more flexible,
are still interpretable, because we can graphically represent the relationship be-
tween each explanatory variable and the response one. Additionally, categorical
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explanatory variables may be included in the model through parametric effects.
In that scenario, we can complete (2) by considering:

Y = β0 +

p∑
j=1

fj(Xj) + Zρ+ ε, (2)

where Z denotes the design matrix for categorical variables, and ρ the vector of
parameters associated with them.

GAMs are an extension of additive models just as GLMs are an extension
of linear models. The relationship between the response and the explanatory
variables is of the form:

g(E(Y |X1, . . . , Xp)) = β0 +

p∑
j=1

fj(Xj). (3)

GAMs will be our choice to model hospital admissions and discharges in each
of the departments of interest. In our scenario we suffer from overdispersion, so
we will define a GAM with Negative Binomial response for the daily number of
admissions, and another one for the daily number of discharges. Once we have
these estimates, the number of occupied beds, C, at a specific day, t, can be
computed by:

Ĉt = Ct−1 + Ât − D̂t, (4)

where Ct−1 states for the real number of occupied beds on day t− 1, Ât de-
notes the estimated number of admissions, and D̂t denotes the estimated number
of discharges on day t, obtained from the GAMs. Recall that to estimate the
number of occupied beds at time t, we need admissions and discharges estimates
at time t. Hence, we will first adjust models for admissions and discharges in
each department of interest, and then we will apply (3) to obtain the estimation
of the number of occupied beds.

To evaluate the predictions obtained with the different regression models, we
define the following error measures all of them based on the prediction errors,
ε̂i = Ŷi − Yi for i = 1, . . . , n: Mean Absolute Error (MAE); Root-Mean-Square
Error (RMSE); Relative Absolute Error (RAE); Relative Squared Error (RSE);
Mean Absolute Percentage Error (MAPE).

4 Results

The procedure presented in Material and Methods can be applied to any depart-
ment in the hospital. Due to space constrains and not to result overwhelming,
as explained before we have chosen the Department of Internal Medicine.

Department of Internal Medicine

Department of Internal Medicine has the highest number of patients, at around
17% of hospital patients are theirs. The GAM fitted for the number of admissions



Models for Hospital Bed Management 373

and discharges in this unit is detailed in Table 1. The expressions result after
grouping the non-significant elements of categorical variables, and removing the
non-significant effects of continuous variables at a 5% significant level.

First half of Table 1 shows the result for admissions, including the estimated
coefficients for the different groups of the categorical variables. So does the second
half, but for discharges.

Table 1: Department of Internal Medicine model summary, detailing the ad-
justment and coefficient estimates for admissions and discharges. In admissions,
the reference category for Day is (Monday/Wednesday/Friday/Saturday) and
for Month is (January/February/December); whereas for discharges the refer-
ence category for Day is (Monday).

We can see in Table 1 (admissions part) that the estimate of the intercept
is 2.71 (exponential 15.07), which means that for a Monday in January (or any
other day and month in the reference categories) with no occupied beds the
previous day, and with a median length of stay of 0 days, 15.07 admissions are
expected in the Department of Internal Medicine.



374 M. Picans, M. Isabel Borrajo, M. Conde-Amboage and F. Reyes-Santias

Partial effects associated with the continuous significant variables BedsDay-
Before and MedianLoS are shown in Figure 1. The effect of BedsDayBefore is
negative when the number of occupied beds in the department the day before is
low. This can imply that low occupancy in the department, relates to fewer ex-
pected admissions, while when the department is saturated, a greater number of
admissions is expected. The effect associated to MedianLoS presents a different
behaviour; it is positive for shorter LoS, which we can be understood as shorter
stays in the previous days relate to higher expected admissions; and it decreases
below zero as LoS increases, that is, fewer admissions are expected when longer
stays take place.

(a) Beds day before. (b) Median LoS.

Fig. 1: Estimated partial effect of the continuous significant variables (black line)
with 95% confidence bands (blue shading) in the admissions model for the De-
partment of Internal Medicine.

5 Conclusions

With regard to the esteem of the efficiency of the different categories of the
qualitative explanatory variables, the great influence of the inpatient of urgent
character in the harshness of the stay in the Internal Medicine Service.

On the other hand, is highlighted, the estimated key associated with women’s
and negative income in the service of the study case, implying that slightly but
short stays are expected for them than for men.

An intense seasonal component was appreciated in the number of discharges
than in inpatients,
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Abstract. This article examines the forecasting of platinum prices us-
ing time series and machine learning models in conjunction with 12 other
commodity prices. Platinum, a rare and remarkable chemical element,
has significant industrial and artistic value. This research contributes
to econometrics by demonstrating the applicability of advanced mod-
elling techniques in predicting precious metal prices, and provides valu-
able implications for the field. The price of platinum is volatile, but it
is considered an important indicator of the global economy. Changes
in the price of platinum indicate higher global growth or an impend-
ing recession. This paper investigates the forecasting of platinum spot
prices from the New York Commodity Exchange using several time se-
ries machine learning (MARS, SVM and MLP) and classical techniques
(ARIMA and VARMA). Among the models considered, the Artificial
Neural Network (MLP) shows the highest predictive accuracy with an
RMSE of 9.24. The ARIMA time series model performs the worst with an
RMSE of 74.94. The superior performance of the MLP method indicates
its ability to capture complex relationships between platinum and other
commodities. The study demonstrates the potential of machine learning
techniques, particularly MLP, for accurate platinum price forecasting,
benefiting investors, industry professionals and policy makers.

Keywords: Time series analysis; Multivariate adaptive regression splines
(MARS); Support vector machines (SVMs); Artificial neural networks
(ANNs); Vector autoregressive moving-average (VARMA); Autoregres-
sive integrated moving-average (ARIMA); Platinum price forecasting

1 Introduction

Platinum, symbol Pt and atomic number 78, is a rare and remarkable chemical
element similar to gold as a transition metal and belongs to group 10 of the
periodic table [1]. It is a dense, lustrous, silvery-white metal with exceptional
physical properties such as high malleability and ductility, and resistance to
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corrosion and tarnishing [1]. Platinum occurs mainly in the form of small grains
or nuggets, often in association with other precious metals such as palladium,
rhodium and iridium [2]. Most platinum production is a by-product of nickel
and copper mining. South Africa is the largest producer of platinum, followed
by Russia and Zimbabwe [3]. Platinum’s rarity and beauty have made it a highly
prized metal throughout human history and plays a vital role in many industrial
applications [4]. Demand for platinum comes from a variety of sectors: about
60% is used in automotive catalytic converters, 25% in jewellery, oil refining and
the production of electronic components [5]. In addition, platinum’s resistance to
high temperatures, corrosion resistant, and chemical reactions make it an integral
part of laboratory equipment, electrical contacts and thermocouples [6]. In the
medical field, platinum’s biocompatibility is used in a number of applications,
such as platinum-based drugs, which have proven to be highly effective in treating
certain types of cancer [7].

Platinum is also one of the most important metal commodities actively traded
on major physical futures exchanges such as the London Metal Exchange (LME),
the New York Commodity Exchange (COMEX) and the Shanghai Futures Ex-
change (SHFE). Its value depends on a delicate balance of supply, demand and
market dynamics and is considered a key indicator of the global economy [5].

The analysis and prediction of commodity prices has been studied extensively
in previous research. For example, Mingming and Jinliang [8] used a Multiple
Wavelet Recurrent Neural Network (MWRNN) model to forecast the price of
crude oil, taking into account the price of gold. Similarly, many studies have
focused on precious metals, particularly gold. In a recent paper, Decision Tree,
Support Vector Machine (SVM), K-Nearest Neighbour (KNN) and Linear Re-
gression (LR) methods were used to predict whether the price of gold would rise
or fall in the near future [9]. Other studies used classical time series methods such
as Autoregressive Integrated Moving Average (ARIMA) to predict gold prices
[10]. Another study attempted to predict the price of platinum, along with other
metals such as gold, silver, copper and palladium using various methods such as
LR [11].

The aim of this study is to evaluate and compare the predictive accuracy
of different methods for forecasting the monthly spot price of platinum in the
COMEX series. Specifically, two approaches are used: (a) traditional time se-
ries techniques such as Autoregressive Integrated Moving Average (ARIMA)
and Vector Autoregressive Moving Average (VARMA), and (b) machine learn-
ing models including Multivariate Adaptive Regression Spline (MARS), Support
Vector Machine (SVM), and Multilayer Perceptron Neural Network (MLP-NN).
The forecasting horizon is up to 18 months, taking into account the price dyna-
mics of 12 variables from the COMEX series, such as energy commodities, food
and metals. The objective is to obtain accurate predictions for platinum prices
based on the interaction of these various variables over the specified time frame.
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2 Materials and methods

2.1 Experimental dataset

The data is taken from the World Bank’s Commodity Price Data, specifically the
Pink Sheet CMO Historical Data Monthly, covering a total of 71 commodities.
The data set covers the period from 1960 to today. The training dataset used
includes monthly spot closing price data from January 1990 to August 2021,
while the monthly predicted prices cover the period from September 2021 to
February 2023. There are no missing values and the training and forecast datasets
are complete for the variables and time periods indicated.

The analysis incorporates 12 predictor variables, categorised into four groups:
energy commodities - Brent crude oil, US natural gas and European natural gas;
food commodities - Arabica coffee, tea, orange, beef and sugar; raw materials -
cotton; and metals - aluminium, nickel and silver. These predictor variables are
used in the modelling process to derive accurate forecasts for platinum prices
over the specified forecast horizon.

2.2 Autoregressive integrated moving average (ARIMA) model

Autoregressive models (AR) are based on the idea that the current values of
series, xt, can be explained as a function of certain number p of previous values
xt−p. The autoregressive model of order p, called AR(p), can be expressed as
xt = ϕ1xt−1 + ϕ2xt−2 + . . .+ ϕpxt−p +wt, where xt is stationary, ϕ1, ϕ2, . . . , ϕp
are constants with values different from zero and wt is a Gaussian white noise
with σw

2 = 1. The autoregressive model AR(p) is usually denoted as(
1− ϕ1B − ϕ2B2 − . . .− ϕpBp

)
xt = wt [12] [13].

The Moving average model of order q, called MA(q), assumes that the white
noise wt is combined linearly to form the data. The MA(q) model is defined to be
xt = wt + θ1wt−1 + θ2wt−2 + . . .+ θqwt−q, where there are q lags in the moving
average and θ1, θ2, . . . , θq with θq ̸= 0. The moving average MA(q) model is
usually denoted as: xt = θ (B)wt where θ (B) = 1 + θ1B + θ2B

2 + . . . + θqB
q

[12, 13].
A time series can be considered as ARMA(p, q) if it is stationary xt =

ϕ1xt−1 + ϕ2xt−2 + . . .+ ϕpxt−p + wt + θ1wt−1 + θ2wt−2 + . . . + θqwt−q. The
parameters p and q are called the autoregressive and moving average orders,
respectively [12]. To fix ideas, the ARIMA model is a broadening of the class
of ARMA models to include differencing [13] [14]. Hence, a process xt is said to

be ARIMA(p, d, q) if ∇dxt = (1−B)
d
xt.

2.3 Vector autoregressive moving–average (VARMA) model

VARMA is an extension for the multivariate case of ARMA as it is considered
to be a very flexible model for describing relationships among variables. The
VARMA(p, q) model is specified according to the following expression [15]: yt =
c+ δt+

∑p
i=1 Φiyt−i+

∑q
j=1Θjεt−j + εt, where yt is the vector of response time



Time series analysis for the COMEX platinum spot price foretelling 379

series variables at time t of length n and c is a constant vector of offsets, with n
elements. Φi are the n × n autoregressive matrices. There are p autoregressive
matrices, and some can be entirely composed of zeros. εt is a vector of serially
uncorrelated innovations, vectors of length n. The εt are multivariate normal
random vectors with a covariance matrix Σ. Θj are the n × n moving average
matrices. Finally, δ is a constant vector of linear time trend coefficients with n
elements. Please note that it is possible to build VARMA models with either
p = 0orq = 0.

2.4 Support vector regression (SVR) for time series analysis

Given a set of time series data, a training set consisting of a continuous dependent
variable yi ∈ R, ∀i = 1, 2, . . . ,m and covariates xi ∈ Rp,∀i = 1, 2, . . . ,m can be
constructed by taking p lags of yi. The method ε− SV R constructs a function
f (x) = wTx + b, w ∈ Rn, b ∈ R that has at most a deviation of ε from yi for
all training instances xi, and at the same time is as flat as possible [16]. The

radial basis function (RBF) kernel K (xi, xj) = e∥−σxi−xj∥2

is chosen due to its
superior performance [17].

2.5 Multilayer perceptron neural network (MLP NN) model

The MLP utilizes the function f : X ⊂ Rd −→ Y ⊂ Rc, which can be described
by [18], [19] f (x) = ϕ (ψ (x)) = (ϕ ◦ ψ) (x), ϕ : X ⊂ Rd −→ U ⊂ Rh, ψ :
U ⊂ Rh −→ Y ⊂ Rc, where U is the hidden variables’ space, referred to as
the characteristics space. Taking into account the MLP architecture, it can be
established that: ψj (x) = ψ

(
wj

Tx+ wj0

)
, where ψ is the activation function

of the hidden layer’s neurons, wj ∈ Rd is the parameter vector of the distinct
neurons and wj0 ∈ R is a limit value known as the threshold value. The two
usual activation functions ψ are both sigmoid functions: hyperbolic tangent and
logistic function. ϕj (u) = ϕ

(
cj

Tu+ cj0
)
, where ϕ is the activation function of

the output layer’s neurons, cj ∈ Rh is the weight vector of the neurons and
cj0 ∈ R is a limit value known as the threshold value. In practice, ϕ is normally
the identity transformation, Heaviside step function or a dichotomy function.

Finally, the function used by the MLP NN is formulated as follows f (x) =∑h
j=1 cjψ

(
wj

Tx+ wj0

)
+ c0.

2.6 Multivariate adaptive regression splines method (MARS)

Multivariate adaptive regression splines (MARS) is a multivariate nonparamet-
ric classification and regression technique [18]. MARS defines the functional re-
lationship between the dependent and the independent variables by means of
a group of coefficients and piecewise-defined polynomials, also called splines,
of degree q (basis functions) that are entirely “driven” from the regression
data [18], [20]. The MARS regression model is constructed by fitting basis func-
tions to different intervals of the independent variables. Generally, splines have
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pieces smoothly connected together to describe the behavior of the dependent
variable. The degree q of the splines is usually selected by achieving a compro-
mise between performance and complexity of the model.

In general, any MARS model makes use of the following model: f (x) =∑k
i=1 ci · Bi(x), where Bi (x) =

 x if x ≥ 0

0 otherwise
represents the basis functions of

the model and ci are constant coefficients.

In order to prune and obtain the definitive MARS model, a two steps process
is performed. Firstly, a progressive selection of basis functions leads to a very
complex and overfitted model. Such model, although is able to fit the data,
has poor predictive ability for new objects. To improve prediction, redundant
basis functions are removed one at a time using a regression procedure. To
determine which basis functions will be included in the model, the generalized
cross validation (GCV) methodology is employed. In this methodology, the root
mean squared residual error is divided by a penalty parameter, which depends
on the complexity of the model.

The GCV equation is GCV (M) =
1
n

∑n
i=1(yi−fM (xi))

2

(1−M+1+d·M
n )

2 , where M is the num-

ber of basis functions, and the parameter d is a penalty for each base function
included in the model [21]. Once the MARS model is constructed, the relevance of
the explanatory variables can be expressed as their contribution to the goodness
of fit of the model. To determine variable importance scores, MARS calculates
how much the goodness of fit is reduced when eliminating each variable

2.7 The goodness-of-fit of this approach

The goodness of fit of the regression models was evaluated to assess the accu-
racy of the model, taking into account the discrepancies between observed and
predicted values. The root mean square error (RMSE) was the primary crite-
rion used to evaluate the models [22], [23]. This statistic is used frequently to
evaluate the forecasting capability of a mathematical model. Indeed, if the ob-
served values are yi, the corresponding modelled values are ŷi, n the number
of samples (or different predictions), then the RMSE is given by the formula

RMSE =

√∑n
i=1(yi−ŷi)

2

n [22], [23].

If RMSE has a value of zero, it means that there is no difference between the
predicted and observed data.

3 Results and discussion

The dataset used in this study covers the period from January 1990 to Febru-
ary 2023, and the forecast of monthly platinum prices covers the period from
September 2020 to February 2023, with data from January 1990 to August 2020
used for model training.
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Feature selection is a critical step in the modelling process, primarily aimed
at identifying and removing non-informative or redundant predictors from the
model. The variables selected for inclusion in the multivariate models are Brent
crude oil, US natural gas, European natural gas, Arabica coffee, tea, orange,
beef, sugar, cotton, aluminum, nickel and silver.

To improve model generalization and reduce the risk of over-fitting, a k−fold
cross-validation approach with k = 10 was used during model development.
This cross-validation technique ensures that the performance of the models is
evaluated on multiple subsets of the data, promoting a more robust assessment
of their predictive capabilities and reducing the influence of data peculiarities.

The artificial neural network model provided the most accurate approxima-
tion with a root mean square error (RMSE) of 9.24, followed by the e-SVM
model with an RMSE of 20.05. In comparison, the VARMA multivariate time
series model outperformed the MARS model with RMSE values of 40.78 and
58.48 respectively. However, the ARIMA time series model, the only univariate
technique used, showed the worst performance with an RMSE of 74.94.

Table 1: Summary of performance.

ARIMA VARMA SVM MARS MLP NN

RMSE 74.945 40.781 20.050 58.481 9.236

Table 1 presents the detailed results obtained for each of the models, while
Fig. 1 shows the predictions for the 18-month period, contrasting the values
obtained by each method with the actual platinum prices.

The evolution of platinum prices over the study period from 1990 to 2023
has been shaped by various factors that have influenced its market behaviour,
including economic crises, political and socio-economic developments, energy
factors and trade relations. Economic crises, such as the global financial crisis
of 2008, have had an impact on platinum prices. In times of economic uncer-
tainty, investors tend to seek safe-haven assets, including precious metals such
as platinum [5].

During the 18-month period used to forecast and compare the results of
various time series and machine learning models, the global economy experienced
stagnation due to the COVID-19 pandemic, resulting in the automotive sector
being hampered by chip shortages [24]. The platinum price was particularly
sensitive to this situation, as its use in catalytic converters is closely linked to
the automotive industry.

In addition, during this period, significant political and socio-economic events
in major platinum producing countries such as South Africa and Russia could
have an impact on platinum supply and production.
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Fig. 1: Actual platinum prices and forecasts from ARIMA, VARMA, SVM,
MARS, MLP NN models for the 18-month study period from September 2021
to February 2023.

Based on the observed results, it is clear that the machine learning models
outperform the time series models, achieving better approximation and pre-
dictive performance in forecasting platinum prices. These results highlight the
importance of applying advanced machine learning techniques in the field of
econometrics to improve forecasting accuracy and decision making in financial
and commodity markets.

The interplay of these multiple factors underlines the complexity of platinum
price dynamics and underlines its sensitivity to both macroeconomic and sector-
specific developments. This comprehensive understanding is critical to the proper
assessment and forecasting of platinum prices, given their strong links to global
economic and political conditions and their specific applications in key industries.

4 Conclusions

The purpose of this study is to determine the method that best predicts the plat-
inum price over an 18-month horizon, using the prices of 12 other commodities.
Several time series and machine learning models were used, including ARIMA,
VARMA, SVM, MARS and MLP.

After rigorous evaluation, the MLP method was found to outperform the
other models, producing the lowest root mean square error (RMSE) for plat-
inum price predictions. This indicates that the MLP has superior predictive
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accuracy in capturing the complex relationships between platinum and selected
commodities.

The incorporation of both time series and machine learning methods allowed
for a comprehensive analysis of platinum price dynamics, taking into account
both short and long term trends. The inclusion of 12 predictor variables im-
proved the robustness of the models and provided valuable insights into the
interconnected nature of commodity markets.

The results highlight the potential of machine learning techniques, particu-
larly MLP, to accurately predict platinum prices relative to other commodities.
These predictive capabilities are important for investors, industry professionals
and policy makers as they enable better informed decisions and risk management
strategies.

This research contributes to the field of econometrics by demonstrating the
applicability of advanced modelling techniques in predicting precious metals
prices, and provides valuable implications.

Finally, we believe that it would be interesting for future work to combine
models and extend the studies by looking at other economic and social factors
related to the price of platinum.
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Forecasting European thermal coal spot prices. Journal of Sustainable Mining
14:203–210 (2015).

24. Ramani, V., Ghosh, D., Sodhi, M.S.: Understanding systemic disruption from the
Covid-19-induced semiconductor shortage for the auto industry. Omega 113:102720
(2022).



Part VII

Complex Networks, Graphs,
and Applications





Higher order networks and hypergraphs: A
different approach for the detection of

communities

Gonzalo Contreras-Aso1,2, Regino Criado1,2,3, Guillermo Vera de Salas1 and
Jinling Yang1,4

1 MACIMTE Dept., Rey Juan Carlos University, C/ Tulipán s/n, 28933-Madrid
(Spain),

2 Laboratory of Mathematical Computation on Complex Networks and their
Applications, Universidad Rey Juan Carlos,
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Abstract. The communities of nodes of a hypergraph or higher order
network are formed by groups of nodes that share many hyperedges, so
that the number of hyperedges they share with the rest of the nodes
is significantly smaller, so that these communities can be considered as
independent compartments (or superclusters) of the hypergraph. An ap-
proach is presented that relies on the so-called derivative graph of a
hypergraph, which allows the detection of communities of a higher order
graph without a high computational cost, showing important computa-
tional advantages of the proposed methods over other existing methods.

Keywords: Hypergraph, Derivative of a hypergraph, Higher-order net-
work, Communities in a hypergraph

1 Introduction and previous concepts

In the real world, there are many examples related to the usefulness of the study
of communities in the context of complex network science: families, virtual com-
munities (Facebook, Twitter,...), groups of proteins with similar functions within
the cell, companies and customers with the same profiles and many others [1–5].
Thus, different algorithmic methods for the detection of communities have been
appearing in the many disciplines in which this tool has applications [6–9]. Com-
munity detection in the context of higher-order networks has also received much
attention from the network science community [10–13].
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We are going to present a new approach for community detection in higher-
order networks based on the concept of a derived graph associated with a hy-
pergraph [14,15], which, in addition to being naturally adapted to hypergraphs
and higher-order networks, presents certain computational advantages over other
approaches and the associated methods usually used on this type of structures.

A hypergraph (or higher order network) is a pair of sets H = (X, ε) in which
X = {1, ..., N} is a finite set of nodes and ε = {h1, h2, . . . , hn} is a collection of
subsets of X such that hi ̸= ∅ (i = 1, 2, . . . , n) and X =

⋃n
i=1 hi. The elements

of ε are called hyperedges. Thus, hypergraphs appeared as the natural extensions
of graphs to describe group interactions between sets of nodes.

It is usual to resort to some matricial representation of the hypergraph. In
this context, it is usual to employ the incidence matrix I(H) ≡ (Iih) ∈ RN×|ε|.
This matrix is defined as

(Iih) =

{
1 if i ∈ h,
0 otherwise.

(1)

It is not difficult to check that

I(H) · I(H)t = A(H) = (aij) ∈ RN×N ,

where

aij =

 |{h ∈ ε | i ∈ h}| if i = j,

|{h ∈ ε | i, j ∈ h}| if i ̸= j.
(2)

To define a criterion for how different communities are established, we need a
measure to establish the degree of similarity between sets of nodes. The basic
Jaccard index to compare the degree of coincidence or similarity between two
sets A and B can be obtained from the formula

J (A,B) = |A ∩B|
|A ∪B|

0 ≤ J (A,B) ≤ 1.

It is important to note that since the establishment of this similarity measure,
several generalizations and refinements of this mean (including the overlapping
index) have been appearing in the scientific literature. In particular, one of the
most widely used is

Jn(A,B) =
|A ∩B|n

|A ∪B|
, I(A,B) =

|A ∩B|
min{|A|, |B|}

and C(A,B) = J (A,B) · I(A,B). Observe that 0 ≤ C(A,B) ≤ 1. In our case, to
define the similarity criterion between nodes we will use the concept of derivative
graph of a hypergraph [14,15]:

Definition 1. Given a hypergraph H = (X, ε), with A(H) = (aij) ∈ RN×N ,
the derivative hypergraph of H with respect to the pair of nodes i, j ∈ X is the
numerical value

∂H
∂{i, j}

=
aii − aij + ajj − aij

aij
=
aii − 2aij + ajj

aij
. (3)
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2 Two new methods to detect communities in
hypergraphs

2.1 Hierarchical clustering and linking function

Within hierarchical clustering, there are two procedures: agglomerative and di-
visive. Agglomerative clustering, which is the focus of this work, merges the pair
of closest clusters in each step until there is one final node left, which comprises
the entire data set.

The agglomerative hierarchical clustering method is particularly useful for
partitioning data sets for which merely two pairwise distance functions are de-
fined: to measure distances between nodes and to measure distances between
clusters linkage function. In our study we will focus on the so called average link
(UPGMA) (Unweighted Pair Group Method with Arithmetic Mean) [17] using
the derivative between nodes as a “semidistance”.

The linking function considered is the basis of the corresponding agglomer-
ative method of hierarchical clustering. Thus, given a ”proximity” matrix (i.e.:
adjacency matrix from a derivative graph):

a11 a12 · · · a1n
a12 a22 · · · a2n
...

...
. . .

...

a1n a2n · · · ann

→


0 ∂H
∂{1,2} · · ·

∂H
∂{1,n}

∂H
∂{1,2} 0 · · · ∂H

∂{2,n}
...

...
. . .

...

∂H
∂{1,n}

∂H
∂{2,n} · · · 0


the linkage is merging two clusters X,Y if D(X,Y ) ∈ R is the minimum than
any other D(U, V ) for any clusters U, V .

Thus, the linking function is merging two clusters Ci, Cj if D(Ci, Cj) ∈ R is
the minimum than any other D(Cm, Cn) for any clusters Cm, Cn. In our case
(UPGMA)

D(Ci, Cj) =
1

|Ci||Cj |
∑

x∈Ci,y∈Cj

d(x, y)

where, in this case, d(x, y) = ∂H
∂{x,y} . From here, the method consists of calcu-

lating the derivatives of the hypergraph with respect to each pair of its nodes,
and calculating the linkage function between the clusters obtained at each step,
recording the largest gap between two steps, obtaining the corresponding parti-
tion in communities by cutting the dendrogram by the segment corresponding
to the largest gap.

It is important to emphasize that the use of the type of similarity related to
the derivative graph represents a certain conceptual leap, as comparing the simi-
larity of two nodes in both a hypergraph and a hyperstructure can be understood
in the context of the study of mesoscale [14,16].
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2.2 Maximizing modularity

Modularity of a pairwise network is a concept used in traditional network analysis
to measure the strength of this community structure. It is a scalar value that
ranges from -1 to 1, with higher values indicating a stronger modular structure.

Q =
1

2m

∑
ij

[
aij −

kikj
2m

]
δ(Ci, Cj), (4)

where A = (aij) is the adjacency matrix of the network, m is the number of
edges, ki and kj are the degrees of nodes i and j.

The Iteratively Reweighted Modularity Maximization (IRMM) algorithm by
Kumar et [18] aims to discover a partitioning that maximizes the community
structure in the hypergraph. This type of algorithms can be applied iteratively
to each of the obtained communities. The idea of the IRMM algorithm is to
apply on the clique reduced graph of H to get a partition that maximizes the
modularity. By iteratively reweighting the hyperedges maximizing the modu-
larity, the IRMM algorithm aims to discover a partitioning that maximizes the
community structure in the hypergraph. The iterative process helps refine the
clustering by gradually adapting the hyperedge weights and node assignments.
In order to compare this algorithm with our method, it is necessary to use the
same adjacency matrix to make such a comparison. Our second method consists
of calculating the derivatives of the hypergraph with respect to each pair of its
vertices and, from there, consider the reduced graph (with the possible appear-
ance of clusters with more than one node in the first step, if the value of the
derivative is zero) and the linkage function over the clusters in the dendogram
until the number of communities that maximizes modularity is obtained. This
second method can be applied iteratively.

Figure.1 shows a Toy-Model, in which the considered hypergraph has 13
nodes (numbered from 0 to 12) and 16 hyperedges, serves to illustrate both the
described method and the other two methods considered, our second method,
baseda on the concept of modularity and the method of Kumar et al. [18]. As it
can be seen, when applying the three methods in this Toy-Model, 3 communities
appear in the three cases: [[0, 1, 2, 3, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] with a
modularity of 0.473064735174287.

3 Real world examples and comparative results

In Figure.2 each node is an author who has collaborated with Prof. Boccaletti,
with each hyperedge being a scientific publication. The source of the data is
Scopus, and it amounts to a total of 338 publications with 413 co-authors. We
included another set with all publications (not including Prof. Boccaletti), of
each of the co-authors. The hypergraph is thus enlarged, containing now a total of
15237 hyperedges. The hypergraph is filtered based on the following criteria: we
only keep authors with 5 or more publications in common with Prof. Boccaletti
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(i.e. we are considering frequent co-authors). This filtered hypergraph contains
67 authors with 1685 publications among them and/or Prof. Boccaletti.

It is important to highlight that while our algorithm can work with the hy-
pergraph as-is, we have found that the IRMM algorithm does not converge in
reasonable time (more than 24 hours in a dedicated server with 4.0GHz Intel
Xeon Gold 5220R) when applied to it. In fact, when applying the four meth-
ods (derivative graph highest gap cut, maximum modularity, iterated maximum
modularity, IRMM), to the Stefano Boccaletti’s coauthors hypergraph we obtain
the following quantitative results

Method N. of com. Mod. Av. time

Height-based cut 16 0.642 0.002s

Max. modularity 9 0.678 0.457s

Max. modularity, iterated 24 0.564 0.719s

IRMM 9 0.714 146.604s

One of the main issues one faces when applying community detection to
a real network is whether the partition obtained “makes sense”. In order to
validate the proposed methods, and apply them to a real dataset where there is
“universal agreement” on the communities obtained, based on the information in
the dataset, we have analyzed a classically labeled dataset [19,20]. A quantitative
comparison between both methods applied to this dataset can be found in the
table:

Method N. of com. Mod. Av. time

Height-based cut 8 0.428 0.008s

Max. modularity 6 0.435 8.256s

As it can be seen the highest-based cut method performs the community
detection task very efficiently and both methods give the expected answers that
match perfectly with what is expected. The maximum modularity method suffers
from the fact that the construction of the clique-reduction, so it is computation-
ally more expensive.
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Fig. 1: a) Toy example hypergraph. b) Partition into communities using either
of the two methods based on the derivative graph. c) Dendrogram corresponding
to the average (UPGMA) clustering via the derivative graph, as discussed in the
main text. d) Modularity at each partition of the toy hypergraph given by its
dendrogram, where n is the number of communities. The modularity given by
the partition at the highest gap is also explicitly shown.
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Fig. 2: The image represents the communities of Professor Stefano Boccaletti’s
network of co-authors as described criteria classified by our modularity maxi-
mization method. The image also shows the subcommunities obtained by iter-
ating over each of the partitions.
1.1: Li D., Havlin S.; 1.2: Barzel B., Zhang X.;
2.1: Bragard J., Mendoza C.; 2.2: Kurths J., Zhou C.S.; 2.3: Mancini H., Maza D.; 2.4: Meucci R., Allaria E.,
Arecchi F.T.;
3: Bortolozzo U., Ramazza P.L., Pampaloni E., Residori S., Giaquinta A.;
4.1: Jusup M., Wang Z., Li X., Dai X., Perc M.; 4.2: Shi L., Guo H., Jia D., Shen C.;
5.1: Sousa P.A.C., Menasalvas E.; 5.2: Papo D., Buldú J.M., Zanin M.; 5.3: del-Pozo F., Gutiérrez R., Maestú F.,
Bajo R.; 5.4: Jaimes-Reátegui R., Sevilla-Escoboza R.; 5.5: Navas A., Sendiña-Nadal I., Leyva I., Almendral J.A.;
6.1: Hramov A.E., Koronovskii A.A., Moskalenko O.I.; 6.2: Maksimenko V.A., Makarov V.V.;
7.1: Raigorodskii A.M.; 7.2: Frasca M., Moreno Y., Latora V., Gómez-Gardeñes J.; 7.3: del Genio C.I., Alfaro-
Bittner K., Criado R., Romance M.; 7.4: Musatov D.;
8.1: Guan S., Liu Z., Zou Y.; 8.2: Qiu T., Bonamassa I.;
9.1: Chavez M., Amann A., Hwang D.-U.; 9.2: Valladares D.L., Pecora L.M.

Fig. 3: Representation of Prof. Stefano Boccaletti’s co-author network commu-
nities (source: Scopus. Updated as of June 30, 2023).
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4 Conclusions

We present two methods for the detection of high-order network communities
(hypergraphs) without high computational cost and that relies on the so-called
derivative graph of a hypergraph. The second method that maximizes modularity
is computationally more expensive than the first one. And last, but not least,
through several simulations it is shown that this second method achieves a very
high modularity value close to that of other methods (IRMM) which are much
more computationally expensive and, moreover, in one of the examples shown,
fails to complete the required computation.
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Abstract. Many complex systems can be modeled by graphs and net-
works.A series of factors must be considered when studying the properties
of graphs. It is primarily interesting the study graph communities. Such
communities are subgraph structures that have more connections within
the same subgraph than with the rest of the graph. In some problems,
the study of communities allows quantitative and qualitative approaches
and obtaining some knowledge about the structure of the graph and what
it represents [2, 3, 7].
There is extensive literature on the study of communities, mostly fo-
cused on non-directed graphs [2, 3, 7]. In our case, we focus our work
on the study of communities in directed graphs, weakly connected, with
weights on the edges. In this paper, we present briefly two alternatives
to obtain the communities in a directed graph using convolution tech-
niques and fuzzy tools applied on linearized graphs that allow us to prune
non-significant edges and study the behavior for the different procedures
presented.

Keywords: Complex Networks, Community Detection, Convolution,
Fuzzy filters.

1 Introduction

In a complex network, a community of vertices is defined as a subset of network
vertices that are highly related to each other and less to the rest. Nodes grouped
in the same community have common characteristics that make them play a
certain role within the network.

The study of those subgraphs whose vertices, which have more connections
within the same subgraph than with the rest of the graph, appear related to
problems such as reassignment of students in grades, trophic chains, traffic in
airports, and public transport networks [3, 4, 6].

Obtaining these communities is a problem that has merited attention from
different points of view. There is extensive literature on the study of communities,
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mostly focused on non-directed graphs [2,3,7]. Modularity allows us to measure
the goodness of the approximation obtained by the algorithm.

There are different algorithms to obtain the communities, however, depending
on the criteria or properties used by each algorithm, slightly different results are
obtained. So, for example, if we consider the graph of Zachary, where students of
a karate club must opt for one of the two senseis, applying different algorithms
we get different results, even with a similar modularity, see Figure 1.

Our interest is focused on the study of communities in directed graphs, weakly
connected, with weights on the edges. The algorithms to find communities usu-
ally do not work satisfactorily in this type of graph.
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(c) Modularity 0.399

Fig. 1: Communities obtained on the Zachary graph with (a) Girvan-Newman,
(b) Walk Trap, and (c) Label Propagation algorithms.

2 State of the art

Recently, different alternatives have been proposed to obtain the communica-
tions in directed graphs, by the way: in 2016, Hervás et al proposed a pruning
algorithm; in [12] an algorithm based on center detection.

A new approach was proposed in [11] that uses convolution techniques to
solve problems related to tax fraud detection. The general idea is to apply edge
detection techniques in images. Detecting a border in an image consists of iden-
tifying sudden changes in the intensity of the image, in some cases, these changes
are perfectly detectable, in other cases minimal changes of intensity appear that
we cannot consider as borders and that we will label as noise.

The first step to detect the edges is to use filters to smooth the image, elim-
inating noise, the second phase is to enhance the image obtained and finally
detect pixels where there are edges. Muñoz et al propose the ConvGraph algo-
rithm that consists of five steps:

1. Obtain the linear graph of G, also known as the dual graph, to more easily
detect the edges.

2. Applying a convolution filter to the graphH, in this case, applies to Gaussian
and the Laplacian of the Gaussian

3. Detect edges and prune when sign changes are detected in the convolution.
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4. Use a ratio measuring community weights against the total graph to validate
the community.

5. Transfer the communities from the dual graph to the original graph.

The results are more than acceptable as we can see in detected communities
in Figure 2 and the obtained modularity coefficients.
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Fig. 2: (a) The desired communities to be detected. Detected communities with
(b) Girvan-Newman (mod. 0.490), and with (c) ConvGraph (mod. 0.661).

3 Using fuzzy logic in the convolution

The question to ask ourselves is if there are other filters that can provide us
with better results. Related to this question lies the fact that complex datasets
are not free from uncertainty, noise and imprecision. So, alternative solutions
can be found if we use tools able to represent and manage these concepts in the
datasets. For this, one interesting tool is fuzzy logic. The Fuzzy logic has been
used previously for processing, for example digital images containing acquisition
or transmission noise. The development of methods and techniques to eliminate
noise as accurately as possible is crucial in this area. In 2007 [9] addressed the
difficulties due to the combination of Gaussian and impulsive noise, and in [10]
proposed a method based on fuzzy metrics.

The proposed method is based on the concept of peer group [2]. This ap-
proach considers that a pixel in an image is surrounded by a set of neighbors
similar to it, forming the so-called peer group. Establishing this similarity be-
tween pixels is not an easy process, so the authors decided to use fuzzy filters
and obtain competitive results compared to other methods of noise detection.
Our objective is to target communities through the use of these filters. Fuzzy
logic is a fascinating tool to explore for the problem addressed in this work.

4 Proposed Algorithm

Before presenting the proposed algorithm, we introduce the concept of linear
graph, and we also provide the definitions of fuzzy distance which is central
element to our approach.
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Line graph: For a given graph G = (V,E), where V represents the set of
vertices and E the set of edges, it can be obtained a line graph LG = (V ′, EL),
where the line graph is defined as: The vertices V ′ = {v′1, v′2, . . . , v′n} of the
linear graph LG correspond to the edges E of the original graph G. Each pair of
vertices in LG are adjacent if and only if their corresponding edges in G share a
common vertex.

Fuzzy metric: We define the fuzzy metric M(source, destination, t) as the
measure of the fuzzy distance between vertices source = v′i and destination = v′j
in the linear graph with a sensitivity parameter t. The metric is defined with the
function shown in Equation 1.

M(s, d, t) =
t

t+
∣∣s− d∣∣ (1)

Weighted fuzzy distance: The weighted fuzzy distance Ws for a vertex s
is defined as the difference of the vertex s in the line graph and the sum of the
other destination vertices different than s calculated with the next Equation 2:

W (s, t) =
t

t+
∣∣∣v′s − j<=n∑

j=1

v′j

∣∣∣ where j ̸= s (2)

The proposed algorithm detects the constituent edges of the community bor-
ders as those whose corresponding vertex in the linear Graph has an weighted
fuzzy distance significantly different from the weighted fuzzy distance of the other
vertices. And after that pruning those community edges the graph communities
can more easily be detected.

4.1 Algorithm: ConvGraph using Fuzzy filters

Algorithm 1 ConvGraph using Fuzzy filters.

Data: Directed graph G =< V,E >
Result: Communities detected after applying fuzzy filters to the graph
Transform the original graph G to its graph line LG

for each source vertex of the line graph vertices V ′ do
Calculate the weighted distance W (source, t)

end for
Detect borders between communities and select edges to prune when the corre-
sponding weighted distance Wi have a significant difference with the weighted
distance of the rest of edges

We developed an improvement for this algorithm that eases finding the bor-
ders between communities increasing the difference in their weighted fuzzy dis-
tances and reducing the influence of the parameter t. It was achieved with a
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different definition of fuzzy distance and weighted distance shown in Equations 3
and 4.

M ′(x, y, t) =
t

t+
∣∣(n− 1)x− y

∣∣ (3)

W (s, t) =
t

t+
∣∣∣(n− 1)v′s −

j<=n∑
j=1

v′j

∣∣∣ where j ̸= s (4)

Figure 3 shows a graph directed with four communities obtained using the
generator proposed at [8], and the results when applying the two versions of the
algorithm.

(a) (b)

Fig. 3: Detection of Graph Communities when using the ConvGraph algorith (a)
with metric M, and (b) with metric M’.
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Fig. 4: Same Graph Communities are detected in the Zachary’s graph when using
the ConvGraph algorith (a) with metric M, and (b) with metric M’.
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5 Conclusions

The use of Fuzzy filters combined with the ConvGraph algorithm has shown effi-
cient in obtaining communities in poorly conditioned directed graphs, obtaining
more accurate results and improving the values of modularity. In fact, by ap-
plying these procedures to untreated graphs, for example, Zachary’s graph in
Figure 1 shows a better approach to communities and better values of modular-
ity, as we can see in 4. Until here the objectives of this work arrive, our steps
from now are directed to determine the values of the parameter t that allow us
to optimize the obtaining of communities.
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Abstract. In this paper we analyze the FIA formula one world champi-
onships from 2012 to 2022 taking into account the drivers classifications
and the constructors (teams) classifications of each Grand Prix. The
needed data consisted of 22 matrices of sizes ranging from 25 × 20 to
10× 19 that have been elaborated from the GP classifications extracted
from the official FIA site. We have used the Kendall corrected evolutive
coefficient, recently introduced, as a measure of Competitive Balance
(CB) to study the evolution of the competitiveness along the years in
both drivers and teams championships. In addition, we have compared
the CB of F1 championships and two major European football leagues
from the seasons 2012-2013 to 2022-2023.

Keywords: Kendall’s tau, Formula One, Football, Competitive balance,
sport rankings, contest

1 Introduction

A ranking naturally appears when we sort elements, being this a key action in
more activities such as analysis of sport competitions [2], economic time series
[14], comparison of algorithms performance [25], etc. Series of rankings can be
studied from different perspectives. For example, to analyse sorting algorithms
[15], to define measures of disarray [7], to use rank transformation to develop
nonparametric methods in Statistics [5], to learn to rank in machine learning
applications [4], etc. In this paper we are interesting in characterising a series
of rankings by giving a coefficient that measures the disarray along the series
in the classic manner of [11]. Specifically, we follow the definitions of [21], [20]
and [6].

2 Kendall corrected evolutive coefficient

The Kendall corrected evolutive coefficient, denoted by τ̂•ev, was introduced in
[21]. It takes as input a series of m rankings (with at most n elements) that
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can be complete (that is, the n elements are ranked in all the rankings) or
incomplete. In addition, we consider the existence or not of ties between the
ranked elements. Kendall corrected evolutive coefficient can be considered as an
extension of a correlation coefficient of two rankings applied to m rankings and
therefore, as output, τ̂•ev gives a real number in [−1, 1].

The coefficient τ̂•ev reduces to some particular coefficients that are well doc-
umented and can be found in the literature. For example, when m = 2 and
the rankings are complete and with no ties, then τ̂•ev reduces to the classical
Kendall’s τ coefficient of disagreement (see [11], [12], [13]) that can be written
as

τ =
2(P −Q)

n(n− 1)
(1)

where P is the number of pair of elements that keep its relative order from
the first ranking to the second one and Q is the number of pairs of elements
that change its order. For example, taking n = 3, the rankings a = [1, 2, 3]
and b = [3, 2, 1] have an associated τ = −1 and the rankings a = [1, 2, 3] and
b = [1, 2, 3] have an associated τ = 1. When m = 2 and the rankings are
complete and with ties, then τ̂•ev is related to the Kendall distance with penalty
parameter p ∈ [0, 12 ] defined in [8]. When m > 2 and the rankings are complete
and with ties, then τ̂•ev reduces the corrected evolutive Kendall distance with
penalty parameter p introduced in [20].

In sport competitions it is most used the term Competitive Balance (CB) to
measure the balance between the teams [27], [19]. A high measure of CB means
that the competition is highly interesting since it is very difficult to predict the
result of a match (or a race, in our case), while a low measure of CB means that
the competition is very predictable, and therefore boring (see. [18], [17], [9], [10],
[2], [3]). In this regard it is more convenient to use the measure called Normalized
Strength (borrowed from complex networks terminology, see [6], [1]), and that
we define here by

NS =
1− τ̂•ev

2
(2)

Note that NS is a normalized index, NS ∈ [0, 1], and its value can be considered
as a measure of CB. We will use this index in our analysis. The interested reader
may find the precise definition of τ̂•ev in [21] but we omit the details for the sake
of brevity.

3 Formula One World Championships

Formula One (also known as Formula 1 or F1) organised by the Fédération
Internationale de l’Automobile (FIA) is a well-known international racing for
cars [23]. The drivers championship began in the season of 1950, while the con-
structors championship began in 1958. Along the years, there has been some
modifications both in the format and in the rules that the participants must
accomplish.



404 Francisco Pedroche

A Formula One season consists of a series of races, each of them known as
Grand Prix (denoted as GP), that take place in several countries. For example,
the F1 2022 season consisted of 22 GP and participated 10 teams and 22 drivers.
A GP is held on a weekend. On friday and saturday some qualifying sessions fix
the starting order (the grid) for the GP race that occurs on Sunday. In this
paper we are interested only in the ranking corresponding to this GP races. This
ranking is decided based on the timing of each driver and he receives a quantity
of points depending on his ranking. From 2010 to 2018 the sharing of the points
was given as shown in Table 1. The points assigned to the constructors in a GP
is the sum of the points of the two drivers of the team that participated in that
GP.

Table 1: Points scoring sharing since 2010

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

25 18 15 12 10 8 6 4 2 1

From 2019 one additional point is given to the pilot that occupied a position
in the top ten and furthermore has the fastest lap in the race. FIA has some
rules to break ties between the pilots and therefore the ranking of the drivers
can be considered as ranking with no ties. Note, therefore that each GP has
its own classification. The final ranking (that is, the F1 Championship) of the
season is made by accumulating the points of each GP, and, again, some rules
are applied to break the ties, if any. Our collection of rankings are precisely the
rankings of each GP in a season, both for drivers and constructors. We use these
series of rankings to compute the corresponding τ̂•ev of that season, and then the
corresponding NS. We precisely describe the used rankings in the next section.

4 Description of the rankings

We have selected the F1 classifications from 2012 to 2022. Our criterium to select
our dataset is based on taking the GP classifications of championships in where
1) the regulations does not vary too much, 2) the distribution of points (e.g. as
given by Table 1) is quite stable, 3) the number of GP does not vary too much
and 4) that the standings can be easily retrieved from the official FIA site [23].
For example, the 2012 season can be retrieved from the FIA site [24]. In Table
2 we show the number of drivers in each championship jointly with the number
of GP in that year.

To describe our rankings we use the following notation (see [26], [21]). Let
V = {v1, v2, · · · , vn} be the objects to be ranked, with n > 1. The ranking is
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Table 2: Number of drivers, teams and GP in each analyzed F1 Championship

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Drivers 25 23 24 22 24 25 20 20 23 21 22

Teams 12 11 11 10 11 10 11 10 10 10 10

GP’s 20 19 19 19 21 20 21 21 17 22 22

given by

a = [a1, a2, · · · , an] (3)

where ai is the position of vi in the ranking. Note that if ai = aj , then vi and
vj are tied. If vi is not ranked, then it is denoted as ai = •.

4.1 Drivers ranking

From the FIA site, we can retrieve the drivers classification for each GP of
the considered championship. In these classifications we can see the ranking,
the points obtained by each driver, and a note indicating whether the driver
has finished the race or not. To construct our drivers ranking we consider that a
driver that has not finished the race (or has not even start it) is an absent element
in our ranking, and therefore it is indicated by •. For example, in Table 3 we
show our notation to describe the first three rankings of the 2012 championship.

4.2 Constructors ranking

From the FIA site we can retrieve the constructors classification for each GP of
the considered championship. The points given to a constructor consist of the
sum of the points of the two drivers of the corresponding team in each GP. In
this case the FIA site offers the points obtained by each constructor. This gives
us the opportunity to create two types of rankings, being the interest to see how
our measure NS is affected by these types. The two considered methods are the
following:

Method 1: We consider that the constructors that have 0 points are tied in
the last position.

Method 2: We consider that the constructors that have 0 points are absent
elements.

As an example, in Table 4 we show the constructors name, scoring and ai
vectors (by using Method 1 and Method 2) for the first three GP of FIA 2012
World Championship.



406 Francisco Pedroche

Table 3: Drivers’ name, nationality, and ai vector for three of the first GP of FIA
2012 World Championship. Elaborated from [23]. Note that • means that the
driver did not start or did not finish the race. The rankings are incomplete rank-
ings with no ties. The order of the drivers in the first column follows the (final)
classification of the constructors championship. The drivers Raikkonen, Grosjean
and D’Ambrosio belong to the same team (Lotus F1) while the rest of teams
contributed with two drivers in the whole GP rankings of this championship.

Driver Nat GP1 GP2 GP3

Sebastien Vettel DEU 2 11 5
Fernando Alonso ESP 5 1 9
Kimi Raikkonen FIN 7 5 14
Lewis Hamilton GBR 3 3 3
Jenson Button GBR 1 14 2
Mark Webber AUS 4 4 4
Felipe Massa BRA • 15 13
Romain Grosjean FRA • • 6
Nico Rosberg DEU 12 13 1
Sergio Perez MEX 8 2 11
Nico Hulkenberg DEU • 9 15
Kamui Kobayashi JPN 6 • 10
Michael Schumacher DEU • 10 •
Paul Di Resta GBR 10 7 12
Pastor Maldonado VEN 13 19 8
Bruno Senna BRA 16 6 7
Jean-Eric Vergne FRA 11 8 16
Daniel Ricciardo AUS 9 12 17
Vitaly Petrov RUS • 16 18
Timo Glock DEU 14 17 19
Charles Pic FRA 15 20 20
Heikki Kovalainen FIN • 18 23
Jérôme D’Ambrosio BEL • • •
Narain Karthikeyan IND • 22 22
Pedro De la Rosa ESP • 21 21

5 Results

5.1 Comparison of constructors and drivers championships

In order to compare the competitivity balance of the GP of drivers and construc-
tors we have computed NS, given by (2) for the GP standings from 2012 to 2022
for drivers and for constructors (with Method 1 and Method 2). The results are
shown in Table 5.
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Table 4: Constructor’s name, scoring and ai vectors (by using Method 1 and
Method 2) for the first three GP of FIA 2012 World Championship. The order of
the teams in the first column follows the (final) classification of the championship.

Score Method 1 Method 2

Constructors GP1 GP2 GP3 GP1 GP2 GP3 GP1 GP2 GP3

Red Bull Racing 30 12 22 2 4 3 2 4 3

Scuderia Ferrari 10 25 2 4 1 6 4 1 6

Vodafone McLaren Mercedes 40 15 33 1 3 1 1 3 1

Lotus F1 Team 6 10 8 5 5 5 5 5 5

Mercedes AMG Petronas F1 Team 0 1 25 8 8 2 • 8 2

Sauber F1 Team 12 18 1 3 2 7 3 2 7

Sahara Force India F1 Team 1 8 0 7 6 8 7 6 •

Williams F1 Team 0 8 10 8 6 4 • 6 4

Scuderia Toro Rosso 2 4 0 6 7 8 6 7 •

Caterham F1 Team 0 0 0 8 8 8 • • •

Marussia F1 Team 0 0 0 8 8 8 • • •

HRT F1 Team 0 0 0 8 8 8 • • •

The data on Table 5 can be resumed on the box-and-whiskers plot shown on
Figure 1. In more detail, the mean values of NS on the period 2012-2022, and
the corresponding sample standard deviation, s, are as follows:
Mean value of NS for drivers: 0.2203, (s = 0.018).
Mean value of NS for constructors (Method 1): 0.2394, (s = 0.035).
Mean value of NS for constructors (Method 2): 0.2771, (s = 0.070).

Let us consider that NS is a random variable. By computing the Shapiro-
Wilk test for normality [22] we obtain the p-values 0.61, 0.08 and 0.44 for the
corresponding NS series for drivers, and constructors (Method 1 and Method 2)
respectively. Therefore we cannot reject the normality of the distribution of NS
of the corresponding samples. Regarding the mean values of NS for constructors
by using Method 1 and Method 2, since they come from the same data (as an
example, the scores in Table 4 give us the corresponding values for Method 1 and
Method 2) we can use a comparison method for means coming from paired data.
By using a t-test we obtain a p-value of 0.18 and therefore we cannot reject that
the means are equal with a confidence interval of 95%. Since the value of the
variances does not have a ratio major than 4 we can use the t-test for comparing
the mean of NS by using Method 1, and the corresponding NS for drivers. We
obtain that the p-value is 0.12 and therefore we cannot reject the null hypothesis
that the means are equal. All in all we have the statistically the three values of
NS are not different, with a confidence interval of 95%.
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Table 5: NS for the series of GP of the Championships from 2012 to 2022 for
drivers and constructors.

Year NS Drivers NS Constructors NS Constructors

Method 1 Method 2

2012 0.2561 0.2456 0.4052

2013 0.2136 0.1924 0.3421

2014 0.1913 0.1616 0.3106

2015 0.2270 0.2722 0.2350

2016 0.2065 0.2218 0.2143

2017 0.2140 0.2632 0.2179

2018 0.2188 0.2559 0.1886

2019 0.2157 0.2772 0.2596

2020 0.2436 0.2562 0.3652

2021 0.2270 0.2413 0.2715

2022 0.2092 0.2455 0.2376

5.2 Comparison of competitiveness between F1 championships and
two major European football leagues

A competitive balance measure like NS, based on sport ranking series, can be
used to compare the CB of two different sports. For example, by computing
the coefficient NS for two major European football leagues (Spanish League -
commercially known as Laliga Santander in the season 2022/23-, and the English
Premier league) we obtain the results shown in Table 6. We have used the series
of standings from the season 2012-2013 to the season 2022-2023 for both the
Spanish League (retrieving the data from the links on [28]) and Premier League
(retrieving the data from [29]). The summary for the football leagues in the
studied period is the following:

Mean value of NS for Spanish league: 0.059, (s = 0.0094).

Mean value of NS for Premier league: 0.056, (s = 0.0062).

As a consequence, by using the results on section 5.1 for NS of drivers and
NS of constructors by using Method 1, we obtain that the mean value of NS
for the F1 championships is about four times greater than the values of NS
corresponding to the analyzed football leagues.
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Fig. 1: Box-and-whiskers diagram for NS for the series of GP of the champi-
onships from 2012 to 2022 for drivers and constructors (by using the two methods
explained on the text).

6 Conclusions

In this communication we have shown how to apply a recently introduced metric
to calculate a measure of the competitive balance (CB) associated to Formula
1 championships, by taking into account the standings of the Grand Prix that
compose each championship. We have introduced to methods (called Method 1
and Method 2) to compute the CB values of the F1 Constructors Championship
in the period 2012-2022. We have obtained that these two methods do not offer
mean values that can be considered statistically different. We think that this
shows a good behaviour of our metric since both Method 1 and Method 2 are
obtained by computing a linear combination from the same set of data (the F1
Drivers Championship) but with different treatment of the constructors that
finish with zero points in a Grand Prix. We also have obtained that the CB of
the F1 Drivers Championship and F1 Constructors Championship show similar
values on the studied period, but with a slightly higher mean value for the
Constructors Championship. As an example of the power of our metric, we have
compared the CB of two different sports: the Formula 1 championships from
2012 to 2022 and the Spanish football league and Premier football league on
the seasons 2012-2013 to 2022-2023. Our results show that the mean value of
CB for the F1 championships is about four times greater than the values of CB
corresponding to the analyzed football leagues.



410 Francisco Pedroche

Table 6: NS values for two European football leagues from season 2012/2013 to
season 2022/2023.

Year NS NS

Spanish league Premier league

2012 0.0615 0.0514

2013 0.0593 0.0656

2014 0.0546 0.0597

2015 0.0613 0.0563

2016 0.0435 0.0589

2017 0.0589 0.0550

2018 0.0688 0.0489

2019 0.0600 0.0643

2020 0.0757 0.0583

2021 0.0440 0.0461

2022 0.0595 0.0515
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Abstract. Previous works have presented exact numerical solutions for
first order delay differential equations and systems. For linear systems
with non-commuting matrix coefficients, an expression involving infinite
sums was truncated to produce numerical approximations, defining non-
standard numerical schemes of arbitrary order. It was suggested that it
could be possible to reduce these infinite sums to finite expressions for
particular problems, depending on the specific structures of the coeffi-
cient matrices. In this communication, we discuss how this approach can
be effective for some second order linear delay differential problems, by
transforming them to first order systems, in general with non-commuting
matrix coefficients. We show that, taking advantage of the simple struc-
tures of the resulting matrix coefficients, finitely expressed exact nume-
rical solutions can be obtained, and high order numerical schemes can be
derived from them that are dynamically consistent with the asymptotic
stability of the continuous solutions.

Keywords: second order initial-value delay differential problems, exact
schemes, nonstandard numerical methods, dynamic consistency

1 Introduction

Exact numerical schemes have been proposed for a wide variety of differential
equations and systems, being useful to suggest basic rules to construct non-
standard finite difference (NSFD) methods that show good dynamic consistency
properties [1]. However, the construction of exact numerical solutions for delay
differential equations (DDE) has been much limited. The first partial result was
due to Garba et al. [2, 3], who proposed a method that was exact in the first
delay interval, and then provided the basis to construct a second order NSFD
method, for the retarded scalar initial value problem

x′(t) = αx(t) + βx(t− τ), t > 0, (1)

x(t) = φ(t), −τ ≤ t ≤ 0. (2)
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Garćıa et al. extended this result in [3], by constructing an exact numeri-
cal solution for problem (1)-(2) in the whole domain, and proposing a family
of NSFD methods of arbitrary order based on it, and then in [4], where they
obtained similar results for the coupled system

X ′(t) = AX(t) +BX(t− τ), t > 0, (3)

X(t) = F (t), −τ ≤ t ≤ 0, (4)

with X(t) and F (t) being d-dimensional real vector functions, and A and B
commuting d× d real matrices.

The general case of non-commuting matrix coefficients was considered in [5],
where an expression for the numerical solution of (3)-(4) involving infinite sums
was presented, suggesting that it could be reduced to finitely expressed closed
forms for particular problems. Based on the expected form of the exact schemes
obtained for retarded delay equations, an exact numerical solution for the scalar
neutral equation

x′(t)− γx′(t− τ) = αx(t) + βx(t− τ), t > 0, (5)

was also provided in [6].
In this communication we discuss how the results in [5] can be used to obtain

both, exact numerical solutions and NSFD schemes based on them, for second
order DDEs, and present some examples for the problem

x′′(t) = −α2x(t) + βx(t− τ), t > 0, (6)

x(t) = f(t), −τ ≤ t ≤ 0, (7)

which has been dealt with in [7].

2 Results and discussion

Theorem 1 in [5] provided an expression involving infinite sums for the exact
solution of the general problem (3)-(4), as recalled in the next lemma.

Lemma 1. Consider problem (3)-(4) with F ∈ C1[−τ, 0]. Let I ∈ Rd×d be the
identity matrix, C = A−1B, and assume A and I + C invertible. Write

Q1(t) =
(
eAt − I

)
(I + C), Qm(t) =

∫ t

0

eA(t−s)BQm−1(s)ds, m > 1,

and define the matrix constants Km
r,p, ∀m ≥ 1, by

Km
r,p = 0, r < p; Km

r,0 = Ar, r ≥ 0;

Km
r+1,p = AKm

r,p +BKm
r,p−1, 1 ≤ p ≤ m− 1; Km

r+1,m = Km
r,m−1B.

Let X(t) = F (t) for t ∈ [−τ, 0] and

X(t+h) = eAhX(t)+

m∑
p=1

Gp(h)X(t−pτ)+
∫ h

0

Qm(h−s)(I+C)−1CF ′(t−mτ+s)ds,
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for m ≥ 1 and (m − 1)τ ≤ t < t + h ≤ mτ , with Gp(h) =
∑∞

r=p
hr

r!K
m
r,p. Then,

X(t) is a well-defined function satisfying (3) and (4).

An exact numerical scheme follows immediately by considering a mesh of
amplitude h = τ/N , N ≥ 1, denoting tn ≡ nh and Xn ≡ X(tn), for n ≥ −N ,
and computing Xn = F (tn), for −N ≤ n ≤ 0, and

Xn+1 = eAhXn+

m∑
p=1

Gp(h)Xn−pN +

∫ h

0

Qm(h−s)(I+C)−1CF ′(tn−mN +s)ds,

(8)
for (m− 1)τ ≤ nh < mτ and m ≥ 1.

A linear high order scalar DDE can be converted in the usual way into a
system as given in (3), with special forms of the matrices A and B. Thus, if these
special structures would allow to derive explicit expressions for the matrices Km

r,p

in Lemma 1, it could be possible to evaluate the sums defining Gp(h), and so
obtaining a finitely expressed numerical scheme as given in (8).

In the case of the second order DDE (6), the corresponding coefficient ma-
trices are given by

A =

0 a

1 0

 , B =

0 b

0 0

 ,

with X(t) and F (t) in (3)-(4) given by

X(t) = (x′(t) x(t))
T
, F (t) = (f ′(t) f(t))

T
.

Using the special forms of these matrix coefficients, it has been shown in [7]
that the matrices Gp(h) can in fact be evaluated and expressed in terms of Bessel
and hypergeometric functions, confirming that the strategy of using the results
in [5] to tackle scalar higher order problems can yield positive results.

The exact solution for problem (6)-(7) with coefficients α = 1.5, β = 0.75,
delay τ = 1 and initial function f(t) = (t + 1), computed using an analytical
expression that was presented in [8], and the exact numerical solution derived
from (8), as given in [7], are presented in Figure 1.

The expressions for the exact numerical solutions of DDEs presented so far
include the presence of an integral term, which seems unavoidable given the
infinite dimensional character of delay equations. This integral term depends on
the initial function, and it can be analytically computed only in particular cases,
so that in general it has to be numerically approximated. However, as shown
in [3–5,7], two families of NSFD schemes can be defined by computing the exact
numerical solution in the first M intervals and then dropping the integral term,
computing the finite sum in (8) either in full (FM schemes) or truncated up to
the M term (TM schemes), both type of schemes being of the same order.

In the case of problem (6)-(7), the corresponding FM and TM schemes can be
shown to be of order 2M , which is confirmed by numerical experiments. Table 1
shows values of maximum absolute errors, Eh, for the numerical solutions of the
problem in Figure 1 computed with TM schemes of different orders and three
mesh sizes, and computational orders estimated as

(
lnEh − lnEh/2

)
/ ln 2.
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Fig. 1: Continuous solution (line) and exact numerical solution computed with
the exact scheme (points) for problem (6)-(7) with coefficients α = 1.5, β = 0.75,
delay τ = 1 and initial function f(t) = (t+ 1).

It can be proved that the family of FM schemes preserve the delay-dependent
stability of the continuous problem. Although a similar proof might not be pos-
sible for the truncated TM schemes, they also seem to possess good dynamic
consistency properties, as shown by numerical experiments.

Equation (6) with coefficients as in Figure 1, α = 1.5 and β = 0.75, is stable
without delay, and there are three stability switches as the delay is increased,
becoming unstable at τ1 ≈ 1.81, stable at τ2 ≈ 5.13, and remaining unstable
from τ3 ≈ 5.44, which is well reproduced by TM schemes, as shown in Figure 2.

It is expected that in future works the approach presented here could also be
applied to more general second order DDEs, and hopefully also to higher order
delay equations.
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(a) τ = 1.80. (b) τ = 1.83.

(c) τ = 5.10. (d) τ = 5.30.

(e) τ = 5.40. (f) τ = 5.50.

Fig. 2: Dynamic consistency behaviour of the TM method (M = 3). Trends in
maximum absolute values, in each interval of τ amplitude for problem (6)-(7)
with the same coefficients and initial function as in Figure 1, show stable and
unstable behaviours with increasing values of delays, from (a) to (f), consistent
with the delay-dependent changes in stability of the continuous solution.
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Table 1: Maximum absolute errors (upper values) and order estimates (lower
values) for numerical solutions of problem (6)-(7) as in Figure 1, computed with
TM schemes of three different orders (M = 2, M = 3, and M = 4), for different
mesh sizes.

h = τ/N M = 2 M = 3 M = 4

h = 0.025 2.32× 10−9 2.59× 10−14 1.69× 10−19

- - -

h = 0.05 3.71× 10−8 1.66× 10−12 4.31× 10−17

3.9992 5.9994 7.9996

h = 0.1 5.93× 10−7 1.06× 10−10 1.10× 10−14

3.9992 5.9992 7.9992
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Abstract. Paradoxically, prior interference competition models did not
account for the effect of both intra- and inter-species interference. We
do so by adapting the works of Beddington [2] and DeAngelis [7] on
predator-prey models to the classical Gause interference competition
model [8]. The established theory estates that global species coexistence
(i.e., regardless of the initial amount of individuals) is only possible,
roughly, when the ratio of the inter-species effects over the intra-species
effects is less than 1. This feature was intended to support the Gause’s
Competitive Exclusion Principle (two species competing for the same
resource can not -hardly- coexist) and the Coexistence Paradox (this
hypothesis is at odds with Nature). We have found that taking into ac-
count intra-species interference in competition allows competing species
to global coexistence even if the above mentioned ratio is larger than 1.
This feature was not allowed in previous works on interference competi-
tion that introduced herd-type behavior [1], [3], [13], the time spent in
competition [4] or group defense [5]. We have also found multi-stability
scenarios not allowed by the classical model [8] but found in the above
mentioned references which, in turn, here are feasible in a wider range of
the parameters space due exclusively to intra-species interference when
competing heterospecifics. Therefore, accounting for interference con-
tributes to unveil the Paradox of coexistence.

Keywords: interference competition, interfering time, species competi-
tion

1 Introduction

The Competitive Exclusion Principle [9] states, roughly, that two species that
compete for the same resource can not coexist. Two classical works support this
Principle: the Gause [8] (Lotka-Volterra like) competition model was derived for
ordinary differential equations based on laboratory experiments with Parame-
cium. The Leslie-Gower difference equations competition model [12] was inspired
on the famous experiments with Tribolium carried out by Park and collaborators.

Both models share a handful of features. Let xi(t) be the number of individ-
uals of species i = 1, 2 at time t. The Gause model reads as

x′i(t) = rixi(t)− aiix2i (t)− aijxi(t)xj(t), (1)
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while the Lelie-Gower model is

xi(t+ 1) =
rixi(t)

1 + aiixi(t) + aijxj(t)
, (2)

where ri stands for the intrinsic growth rate, aii for the intra-species competition
coefficient, while aij measures the competitive effect of species j on species i.

The nullclines of both models are straight lines. Also, assuming that the
trivial equilibrium point E∗

0 = (0, 0) is unstable, both models allow for four
different competition outcomes: either species 1 or species 2 wins regardless of
the initial values, global coexistence, or priority effects: one species will go extinct
depending on the initial amount of individuals. Interestingly, the competition
outcome depends essentially1 on the same combination of parameters

Gause:
aij
ajj

rj
ri
, Leslie-Gower:

aij
ajj

rj − 1

ri − 1
. (3)

The above expressions, that we denote indistinctly by cij , are interpreted as
follows: forget for a moment of the r’s ratio. Coefficient cij < 1 means that the
effect of species j on species i is softer than the effect of species j on species j.
Recall that species j would survive in the absence of species i. Thus, cij < 1
means that species j can not drive species i to extinct. Note that condition
aij/ajj < 1 can be reversed by multiplying by the ratio of the intrinsic growth
rates, i.e., being not harmful enough can be compensated by a sufficiently larger
reproduction rate, which must be taken into account [11].

The outcomes of both the Gause (1) and the Leslie-Gower model (2) are
summarized in Figure 1 in terms of the above defined cij , i ̸= j coefficients,
the so-called competitive strengths [4]. In terms of cij , coexistence or extinction
depends on the balance between intra- and inter-species competition [14], [15].

Coexistence seems to be much more common in Nature than species exclu-
sion, which is at odds with the Competitive Exclusion Principle and gives rise to
the Paradox of Coexistence. Ecologist have done many work to explain this con-
tradiction (find a recent review in [4]). However, from the deterministic models
viewpoint not too much work has been done apart from the recent works as-
suming herd behavior [1], [3], [13], accounting for the time spent on inter-species
competition (individuals interference) [4], and group defense [5].

In this work we set a model that accounts for intra-species interference in
competing species in Section 2. Then we summarize the possible outcomes of
the model in Section 3 and briefly discuss the results in Section 4.

1 If λi are the eigenvalues of the Jacobian at an equilibrium point E∗, it is asymptoti-
cally stable if λi < 0 (|λi| < 1, respt.) for differential equations (difference equations,
resp.)
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Fig. 1: Outcomes of the classical competition model (1) as function of the com-
petitive stregths c12 and c21.

2 The model

Beddington [2] and DeAngelis [7] modelized the effect of interference between
predators when hunting preys. This effect can be easily adapted to competing
species.

Let us make a comment to clarify the effect we are accounting for. Note
that we deal with interference competition (also known as contest competition)
which means that, in contrast to exploitative (or scramble) competition, after
disputing for a resource one of the competitors will take the whole resource they
are competing for. Two heterospecifics may compete for a resource, and the effect
of the resulting interference was addressed in [4]. Instead, here, we account for
the mutual interference between conspecifics that compete for a resource with a
heterospecific. This effect is different from that due to logistic behavior, i.e., that
of two individuals of the same species competing for a resource in the absence
of an individual of the other species.

The complete competition interference model reads as follows

x′i = rixi − aiix2i −
aijxixj

1 + aixi + ãj(xj − 1)
i ̸= j, i, j = 1, 2. (4)

The model analyzed in [4] is (4) with ãj = 0. Here, instead, we are aimed
to understand the net effect of intra-species interference when competing het-
erospecifs. Thus, we consider that the inter-species interference in competition
is negligible, so that ai = 0 and system (4) becomes

x′i = rixi − aiix2i −
aijxixj

1 + ãj(xj − 1)
i ̸= j, i, j = 1, 2. (5)

The analysis of the complete model (4) is beyond the scope of this contribution
and will be available somewhere. We rewrite system (5) accordingly to ui =
aiixi/ri, cij = aijrj/(riajj), and Ki = ri/aii, that yields

u′i = ri

(
ui − u2i −

cijuiuj
1 + ãj(Kjuj − 1)

)
, i ̸= j, i, j = 1, 2. (6)
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where cij is the competitive strength as defined in the left hand side of (3), Ki

is the carrying capacity, and aii/ri is the absolute competition coefficient [6]
of species, i = 1, 2. It is clear that ãj = 0 in (5) yields the classical system
(1). Assuming ãj > 0 gives rise to a new model, the competition model with
Beddington-DeAngelis competitive response.

3 Results

We analyze system (6) by assuming that 0 < ãi < 1 for i = 1, 2. From now on
we assume that ri > 0 for i = 1, 2, which implies that the trivial equilibrium
point E∗

0 = (0, 0) is unstable. Thus, in the absence of species j, species i behaves
according to the logistic equation

u′i = riui(1− ui), (7)

and u∗i = 1 (that is equivalent to x∗i = ri/aii, the corresponding carrying capac-
ity) is a global attractor for the solutions of (7).

A first result states that the dynamics of system (5) evolves eventually in the
region [0, 1]× [0, 1]:

Proposition 1. The non-negative cone is invariant for system (6). Besides,
any solution of such a system with positive initial values will eventually enter
the region [0, 1]× [0, 1] and will not leave it.

Proof. It follows from direct calculations using the fact that the solution of
u′i = ri(ui − u2i ) upper bounds the solution of the corresponding equation in
system (6).

Indeed,

Proposition 2. The solutions of system (6) converge eventually monotonically
to an equilibrium point.

Proof. It follows from direct calculations computing the conditions stated in [10].

Proposition 3. Consider the semi-trivial equilibrium points. E∗
1 = (1, 0) and

E∗
2 = (0, 1). Then, E∗

j is locally asymptotically stable if cij > c̃∗ij for i ̸= j,
i, j = 1, 2 respectively, where

c̃∗ij = 1 + ãj(Kj − 1), i = 1, 2, i ̸= j. (8)

Proof. The existence of E∗
i follows from direct calculations. The stability condi-

tions follow from a standard analysis of the eigenvalues of the Jacobian matrix.

We next classify the possible outcomes of system (6) in terms of the coefficients
of the model. It will turn out that the quantities

Γi =
1 + ãi(Ki − 1)

ãiKi
= 1 +

1− ãi
ãiKi

, i = 1, 2 (9)
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play a key role. Note that Ki ≥ 1 since they are carrying capacities. Indeed, we
divide the c12c21 positive cone into four regions

Rcoex := {0 < c12 < c̃∗12, 0 < c21 < c̃∗21}

Rpe := {c̃∗12 < c12, c̃
∗
21 < c21}

R1 := {0 < c12 < c̃∗12, c̃
∗
21 < c21}

R2 := {c̃∗12 < c12, 0 < c21 < c̃∗21}

(10)

that define the possible outcomes of system (6) (see Figure 2).

Proposition 4. Consider system (6). Then:

1. Global coexistence. There exists an equilibrium point in the non-negative cone
that is GAS for any (c12, c21) ∈ Rcoex.

2. Priority effects. There exists a saddle equilibrium point in the non-negative
cone that is unstable for any (c12, c21) ∈ Rpe. Indeed, E

∗
1 and E∗

2 are locally
asymptotically stable, and the stable manifold of the positive (component-
wise) equilibrium defines the basins of attraction of each semi-trivial equilib-
rium point.

Proof. The non-trivial equilibrium points are the solutions to the equation result-
ing from equating the nullclines of system (6). The number of solutions included
in the non-negative cone follows from applying the Descartes’ rule of signs to
that equation. The stability conditions of the semi-trivial equilibrium points E∗

1

and E∗
2 were proved in Proposition 3. The stability of the non-triVial equilibrium

points follows from the above considerations and Proposition 2.

Proposition 5. Consider system (6). Then:

1. Assume now that Γ1 = Γ2, that is

K2

K1
=
ã1(1− ã2)
ã2(1− ã1)

(11)

Then, it follows that:
(a) Species 1 wins: E∗

1 is GAS whenever (c12, c21) ∈ R1.
(b) Species 2 wins: E∗

2 is GAS whenever (c12, c21) ∈ R2.
2. Instead, if Γ1 < Γ2, that is equivalent to

K2

K1
<
ã1(1− ã2)
ã2(1− ã1)

(12)

Then, it follows that:
(a) Species 1 wins: E∗

1 is GAS whenever (c12, c21) ∈ R1.
(b) Consider the second degree equation on u1 that raises from equating the

nullclines of system (6). Then, there exists a curve, Ψ+, arising from
solving on c21 the result of equating to zero the discriminant of the solu-
tion of the above-mentioned second degree equation such that
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i. Species 2 wins: E∗
2 is GAS whenever

{(c12, c21) ∈ R2} ∩ {(c12, c21); c21 < Ψ+(c12)} (13)

ii. Conditional coexistence in favour of species 2. On the contrary, if

{(c12, c21) ∈ R2} ∩ {(c12, c21); Ψ+(c12) < c21} (14)

then E∗
2 is locally asymptotically stable and E∗

1 unstable. In addition,
there exist two equilibrium points in the positive cone, one locally
asymptotically stable and one unstable. The latest is a saddle equi-
librium point whose stable manifold separates the basins of attraction
of E∗

2 and the positive (coexistence) equilibrium point.
3. Finally, if Γ1 > Γ2, that is equivalent to

K2

K1
>
ã1(1− ã2)
ã2(1− ã1)

(15)

Then, it follows that:
(a) Species 2 wins: E∗

2 is GAS whenever (c12, c21) ∈ R2.
(b) Consider the second degree equation on u1 that raises from equating the

nullclines of system (6). Then, there exists a curve, Ψ−, arising from
solving on c21 the result of equating to zero the discriminant of the solu-
tion of the above-mentioned second degree equation such that
i. Species 1 wins: E∗

1 is GAS whenever

{(c12, c21) ∈ R1} ∩ {(c12, c21); Ψ−(c12) < c21} (16)

ii. Conditional coexistence in favour of species 1. On the contrary, if

{(c12, c21) ∈ R1} ∩ {(c12, c21); c21 < Ψ−(c12)} (17)

then E∗
1 is locally asymptotically stable and E∗

2 unstable. In addition,
there exist two equilibrium points in the positive cone, one locally
asymptotically stable and one unstable. The latest is a saddle equi-
librium point whose stable manifold separates the basins of attraction
of E∗

1 and the positive (coexistence) equilibrium point. See the right
panel of Figure 3.

Proof. When equating the nullclines of system (6) we get a second degree equa-
tion for u1. The solutions of such an equation are the u1 component of the
equilibrium points of system (6). Letting the discriminant of the solution of that
equation equal to zero, the curves Ψ+ and Ψ− are obtained. These curves bound
the regions on the c21c12 plane where there are two, one or none equilibrium
points (that is, the algebraic equation has either real or complex solutions).

Signs of the coordinates of the equilibrium points are determined by using
the Descartes’ rule of signs. The number of equilibrium points inside the non-
negative cone, in addition with stability of the semi-trivial equilibrium points
(Proposition (2)) yield the stability of the non-trivial equilibrium points.
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Fig. 2: Competition outcomes of system (6) as function of the competitive
strengths c12, c21 for increasing values of ã2 = 0.1, 0.3, 0.5 (from left to right).
Other parameter values are: r1 = 6.8, r2 = 2, K1 = 5, K2 = 3, ã1 = 0.2. The
code colour is the same as in Figure 1 except for the dark blue and dark red
regions, that represent conditional coexistence in favour of species 2 or 1, re-
spectively. Note ã1 = 0.2 is kept fixed in the three figures and ã2 varies. As a
consequence, c̃∗21 remains the same while c̃∗21 varies accordingly. Fixing ã2 and
varying ã1 would let fixed c̃∗21 and change c̃∗12.

Fig. 3: Conditional coexistence in favour of species 1 (left panel, either species
1 wins or there is species coexistence) or species 2 (right panel, either species 2
wins or there is species coexistence).
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4 Discussion

It is intuitive that spending time on interfering with conspecifics softens the
competitive effect on heterospecifics. In this work we are able to translate into
numbers such a consequences as described in Proposition 4.

Qualitatively, the new dynamical scenarios are equivalent to those found in
the recent literature. However, the driving process is different: it is not interfer-
ence between heteropecifics [4], neither group defense [5] or herd behavior [13]
nor the result of a competitive-cooperative balance [15].

A key result is that the global coexistence region is larger than that in [1],
[4], [5], [13] or [15]. This feature constitutes an explanation (not unique) of the
Paradox of Coexistence. Also, conditional coexistence (items 2b) and 3b) in
Proposition 5) expands the scenarios permitted by the classical model allowing
for coexistence.

It is of full interest to analyze system (4) for ai > 0 and ãi > 0 to fully
understand the combined effect of interfering with con- and hetero-specifics when
competing.
Acknowledgments: this work is supported by the research project PIUAH22CC-
041 funded by the universidad de Alcalá, Spain. M. Marvá is also partially sup-
ported by the Programa de Recualificación del Profesorado Universitatio funded
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Abstract. Vegetation in semiarid areas exhibit spatial discontinuities
and complex temporal dynamics, and different models have been pro-
posed in the literature to describe the dynamic and spatial characteristic
of semiarid vegetation. Klausmeier proposed a model consisting in a sys-
tem of two partial differential equations relating plant growth and soil
water, showing that, under water limitation, increased infiltration of wa-
ter by plants could produce characteristic spatial patterns of vegetation
found in drylands. This classical model has been analysed and extended
in later years in different aspects, including recently the incorporation of
a discrete delay to account for the lag between water infiltration into the
soil and the following water uptake by plants. In this communication,
we consider a more ecologically realistic distributed delay for soil water
availability, and analyse its effect on the stability and bifurcations of a
mean field Klausmeier-Gray-Scott model.

Keywords: semiarid vegetation, mean field model, Gamma distributed
delay, stability and bifurcations

1 Introduction

Klausmeier model [1] is a classical reference in dryland vegetation modelling, as it
was able to reproduce spatial patterns similar to those found in different semiarid
ecosystems with a relatively simple system of two partial differential equations,
relating plant biomass (N) and soil water (W ). In its original formulation, it
included a two-dimensional spatial region with a diffusion term representing
spreading of vegetation and a gradient term, representing unidirectional flow of
water down the slope,

∂W

∂T
= V

∂W

∂Y
+A− LW −RWN2,

∂N

∂T
= D

(
∂2

∂X2
+

∂2

∂Y 2

)
N +RJWN2 −MN,

(1)
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with parameters water input (A), water evaporation (L), water velocity downhill
(V ), mortality (M), basic water intake rate (R), plant dispersal (D), and plant
biomass yield per unit water (J).

This classical model has been analysed and extended in later years in dif-
ferent aspects (e.g., [2, 3]). With suitable change of variables, the number of
parameters in the nondimensionalized model can be greatly reduced, and, for a
diffusive model for both water and vegetation, usually called Klausmeier-Gray-
Scottmodel, in the unidimensional case, one has

∂

∂t
w(x, t) = d1

∂2

∂x2
w(x, t) + a− w(x, t)− w(x, t)n2(x, t),

∂

∂t
n(x, t) = d2

∂2

∂x2
n(x, t) + w(x, t)n2(x, t)−mn(x, t),

(2)

with rescaled variables water (w) and vegetation biomass (n), and rescaled pa-
rameters water input (a) and mortality (m), where d1 and d2 are diffusion coef-
ficients.

The term w(x, t)n(x, t) represents the amount of water infiltrating into soil
increased by the presence of vegetation. In [4], a discrete delay was incorporated
into this term, w(x, t − τ)n(x, t − τ), to account for the expected lag between
water infiltration into the soil and the subsequent water uptake by plants.

In this communication, we focus on the dynamics of a mean field Klausmeier-
Gray-Scott model with a more ecologically realistic distributed delay for soil
water availability. By considering a Gamma distributed delay kernel, we use the
so called linear chain trick [5, 6], which allows to convert a delay differential
system into an ordinary differential system of higher dimension.

2 Results and discussion

We consider the following non-spatial Klausmeier–Gray–Scott model with dis-
tributed delay in the form of a weak Gamma kernel,

dw(t)

dt
= a− w(t)− w(t)n(t)2,

dn(t)

dt
= n(t)

∫ t

−∞ gα(t− s)w(s)n(s)ds−mn(t),

(3)

where gα(t) := αe−αt, with α > 0. Since the expected value of gα(t) is 1/α, the
parameter α represents the inverse of the mean delay.

Defining the new variable

z(t) =

∫ t

−∞
gα(t− s)w(s)n(s)ds,
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system (3) can be transformed into a system of three ordinary differential equa-
tions, 

dw(t)

dt
= a− w(t)− w(t)n(t)2,

dn(t)

dt
= n(t)z(t)−mn(t),

dz(t)

dt
= αw(t)n(t)− αz(t).

(4)

Systems (2) and (3), or equivalently (4), have the same equilibrium points
(w∗, n∗), a stable trivial equilibrium P0 = (a, 0), corresponding to bare soil, a
double equilibrium P1 = (m, 1) when a = 2m, which is a saddle-node bifurcation
point, and two different equilibria with positive vegetation when a > 2m, P2 and
P3, with P2 < P3,

P2 =

(
a+
√
a2 − 4m2

2
,

2m

a+
√
a2 − 4m2

)
,

which is unstable, and

P3 =

(
a−
√
a2 − 4m2

2
,

2m

a−
√
a2 − 4m2

)
,

whose stability depends on the parameters a, m, and also α in the model with
delay.

It can be shown that when a > 2m, so that the equilibrium P3 exists, in the
model without delay this positive vegetation equilibrium is stable if m < 2 or if

m > 2 and a > m2
√
m−1

(Fig. 1, top).

In the model given by systems (3) or (4), the presence of a distributed delay
may reduce the region of stability of P3, resulting in the degradation of the
system to the bare soil state in conditions where vegetation could be sustained
without delay. In this case, whenm > 2, there is a region delimited by the curves

a =
m2

√
m− 1

and

a =
m
(
1 + L2

)
L

,

with

L =

√
2m+

√
2m− 4

2
,

where the stability depends on the value of the delay parameter α (Fig. 1, bot-
tom).
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Fig. 1: Regions where the higher positive vegetation equilibrium is stable (S,
green) or unstable (U, red) in terms of mortality, m, and water input, a. Top:
Model without delay. Bottom: Model with delay (stability in the yellow region
depends on the distributed delay parameter α).
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(a) α = 1.1αc (b) α = 0.9αc

(c) α = αc

Fig. 2: Stable (a), unstable (b), and periodic behaviours (c) of the mean field
Klausmeier-Gray-Scott model dynamics depending on the distributed delay pa-
rameter α.
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In this case, there is a critical value of the parameter α,

αc =
2mn2∗ − (n2∗ + 1)2

n2∗ −m+ 1
,

where n∗ is the equilibrium biomass in P3, such that the system is stable for
α > αc and unstable for α < αc, with a Hopf bifurcation at the critical value
(Fig. 2).

Work in progress includes analysing the effects of a distributed delay on the
local equilibria in the spatial Klausmeier-Gray-Scott model, as well as consider-
ing different types of kernels that define the distributed delay effects.
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1 Instituto de Instrumentación para Imagen Molecular,
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Abstract. This paper presents an Euler polynomials-based method to
approximate the matrix cosine. According to two different series expan-
sions in terms of the Euler polynomials, algorithms devoted to the ma-
trix cosine computation have been developed. Numerical experiments
have been performed, where both algorithms have been compared with
a code based on Padé approximants.

Keywords: Matrix cosine, Euler polynomials, matrix functions.

1 Introduction

Matrix functions have proven to be an efficient tool in many applications, such
as image denoising [1], neural networks [2], or reduced order models [3], [4, pp.
275–303], among others. Thus, its study is an area of applied mathematics that
has been remarkably developed in recent years.

Among the different matrix functions, trigonometric ones must be high-
lighted. Their computation has received significant attention in the last decades
due to their usefulness in the solution of systems of partial differential problems.
Recently, several state-of-the-art algorithms have been provided for computing
these matrix functions [5–8], in particular for the matrix cosine function. Fur-
thermore, the generalization of some well-known classical special functions to
the matrix environment has been a very active area of research for decades. The
extension to the matrix framework of the orthogonal Laguerre, Hermite, Cheby-
shev, or Jacobi polynomials have proven to be a valuable tool in various fields
of engineering, statistics, physics and telecommunications.

2 Euler polynomials and matrix cosine approximation

Euler polynomials En(x) are defined in [9] as the coefficients of the generating
function

g(x, t) =
2etx

et + 1
=
∑
n≥0

En(x)

n!
tn , |t| < π. (1)
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They have the explicit expression

En(x) =

n∑
k=0

(
n

k

)
Ek
2k

(
x− 1

2

)n−k

, (2)

where the Euler numbers are defined by En = 2nEn(1/2), satisfying the explicit
expression

E2n = 1−
n∑

k=1

(
2n

2k − 1

)
22k(22k − 1)

2k
B2k , E2n+1 = 0, n ≥ 0, (3)

and Bi is the i−th Bernoulli number.
In [10], Euler polynomials were generalized to the matrix environment. Thus,

for a matrix A ∈ Cr×r, we define the n-th Euler polynomial by the expression

En(A) =

n∑
k=0

(
n

k

)
Ek
2k

(
A− 1

2
I

)n−k

. (4)

These matrix polynomials appear in the series expansion

eAt =
et + 1

2

∑
n≥0

En(A)t
n

n!
, |t| < π. (5)

Moreover, the use of expansion (5) to approximate the matrix exponential
function with satisfactory results in terms of accuracy and computational cost
can be found in [10]. Given a matrix A ∈ Cr×r, and using expression (5), we
obtain

cos (A) =
1

2
(cos (1) + 1)

∑
n≥0

(−1)nE2n(A)

(2n)!
− 1

2
sin (1)

∑
n≥0

(−1)nE2n+1(A)

(2n+ 1)!
. (6)

Taylor or Hermite polynomials are even or odd, depending on the parity of
the polynomial degree n. However, Euler matrix polynomials do not verify this
property. In fact, all Euler polynomials are needed in the development of cos(A),
not just the even-numbered. Be that as it may, it is also possible by operating to
obtain an alternative approximation to the matrix cosine where only polynomials
of even degree appear, as follows

cos (A) = cos (1/2)
∑
n≥0

(−1)nE2n

(
A+ 1

2I
)

(2n)!
. (7)

3 The proposed algorithms

In this work, two algorithms based on the approximations (6) and (7) for the
matrix cosine, in combination with the scaling and squaring technique, have
been implemented and compared, attempting to choose the most cost-efficient
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and accurate alternative. MATLAB implementations of these algorithms cor-
respond respectively to codes called as cosm−euler−at (6) and cosm−euler−et
(7). The degree of the matrix polynomials m employed satisfies 36 ≤ m ≤ 42
for cosm−euler−at and 30 ≤ m ≤ 36 for cosm−euler−et. For each matrix to be
computed, the most appropriate degree m and the scaling factor s were decided
from the Algorithm 3 described in [12].

4 Numerical tests

Both proposed algorithms have been numerically compared with MATLAB func-
tion cosm, the code in charge of computing the matrix cosine by means of a Padé
approximation [11]. In our numerical experiments, we have conformed a test bat-
tery composed of the three following sets of matrices:

Set 1: 100 diagonalizable real matrices of dimension 128×128. These matrices
are obtained as the result of A = V ·D · V −1, where D is a diagonal matrix
with real and complex eigenvalues and V is an orthogonal matrix such as
V = H/

√
128, where H is a Hadamard matrix. In this case, we have that

2.18 ≤ ∥A∥2 ≤ 225.71.
Set 2: 100 non-diagonalizable complex matrices of size 128 × 128. These ma-

trices have been generated as A = V · J · V −1, where J is a Jordan matrix
with complex eigenvalues whose modules are less than 10 and the algebraic
multiplicity is randomly generated between 1 and 5. V is an orthogonal ran-
dom matrix with elements in the interval [−0.5, 0.5]. These matrices fulfills
that 83.996 ≤ ∥A∥2 ≤ 97.806.

Set 3: 41 matrices from the Matrix Computation Toolbox [13] and 11 from the
Eigtool MATLAB Package [14], all of them with an order equal to 128×128.
These matrices satisfy that 1 ≤ ∥A∥2 ≤ 398423.

All numerical tests were carried out thanks to the MATLAB version 2023a.
The percentage of cases in which the relative error incurred in the cosine cal-
culation by our algorithms is lower or greater than that of code cosm is given
in Table 1. Our two codes improved similarly cosm for the matrices integrating
the first and third sets. In the case of the second set, the improvement is much
more significant if we refer to the function cosm euler at. These numerical data
are also corroborated by those ones shown as graphs. On the one hand, Figures
1a, 1c, and 1e, corresponding to the graphical representation of the relative error
committed by all the codes for the three matrix sets, reflect the higher accuracy
of the results provided by the two codes proposed. In particular, it can be no-
ticed how the values related to the errors incurred by code cosm euler at always
occupied the lowest part of Figure 1c. On the other hand, Figures 1b, 1d, and 1f,
concerning the performance profile, indicate that Euler polynomial-based codes
are the most reliable, with their values located at the top of the pictures 1b
and 1f. Clearly in these cases, cosm provided the poorest results. Regarding the
matrices from Set 2, codes cosm euler et and cosm delivered almost identical
results, being largely outperformed by function cosm euler et in the initial part
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of the plot. Obviously, it means that it is the most accurate code since, in the
100 percent of the matrices, it offered the closest results to the exact solution. In
terms of computational cost, the number of matrix products required for each
code is reported in Table 2. As expected among our codes, the highest number
of products corresponded to cosm euler at, since the polynomial to be evalu-
ated as approximation to the matrix cosine is composed of all terms (even and
odd). In opposition, the number of multiplications of codes cosm euler et and
cosm were smaller and very similar between them. Nevertheless, as detailed in
Table 3, cosm demanded the highest execution times. Very small difference in
time could be appreciated between codes cosm euler et, which resulted to be the
most efficient, and cosm euler at.

Table 1: Improvement percentage among the different codes.

Set 1 Set 2 Set 3

E(cosm) < E(cosm−euler−at) 3.0% 0.0% 20.00%

E(cosm) > E(cosm−euler−at) 97.0% 100.0% 80.00%

E(cosm) < E(cosm−euler−et) 6.0% 26.0% 16.36%

E(cosm) > E(cosm−euler−et) 94.0% 74.0% 83.64%

Table 2: Number of matrix products required by the codes in comparison.

Set 1 Set 2 Set 3

P (cosm) 1129 1100 604

P (cosm−euler−at) 1377 1300 720

P (cosm−euler−et) 1170 1100 626

Table 3: Elapsed time, in seconds, in the execution of the three codes.

Set 1 Set 2 Set 3

T (cosm) 0.32 0.56 0.20

T (cosm−euler−at) 0.14 0.41 0.10

T (cosm−euler−et) 0.12 0.34 0.09
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Fig. 1: Normwise relative errors for sets 1 (a), 2 (c), and 3 (e), and performance
profiles for the same sets (b, d and f).
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5 Conclusions

This paper describes and compares two Euler polynomials-based algorithms de-
voted to the matrix cosine computation. Using a large and heterogeneous battery
of test matrices, it has been shown that both algorithms are more accurate and
faster than cosm, the best known and most widely employed code for calculating
this matrix function by means of the Padé rational approximation.
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8. Alonso-Jordá, P., Peinado, J., Ibáñez, J., Sastre, J., Defez, E.: Computing matrix
trigonometric functions with GPUs through Matlab. J. Supercomput. 75, 1227–
1240, 2019.

9. Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W.: NIST handbook of
mathematical functions hardback and CD-ROM, Cambridge University Press 2010.
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Camino de Vera s/n, 46022, Valencia. Spain
edefez@imm.upv.es,{jjibanez, jmalonso, jpeinado}@dsic.upv.es

Abstract. In this paper, two algorithms based on Chebyshev polyno-
mials are presented to approximate the exponential of a matrix. One of
them uses the Clenshaw algorithm to evaluate the polynomial that ap-
proximates the matrix exponential function. The other one employs the
Paterson-Stockmeyer method, after expressing the exponential function
in terms of powers of a matrix. Both algorithms have been compared
numerically and computationally with the code that computes the expo-
nential function by means of Padé approximants.

Keywords: Matrix exponential, Chebyshev polynomials, Clenshaw al-
gorithm.

1 Introduction

The matrix exponential is one of the most important matrix functions due to its
utility in various areas of science and technology. But its study is also important
due to the difficulty of its computation [1, 2]. Among the recent works that re-
quire the computation of the exponential matrix, we can cite, e.g. [3–5]. For this
reason, several methods have been provided for computing this matrix function.
In references [7, 8], authors study the use of Pade’s approximants while, in ref-
erences [9–11], the Taylor polynomial approximation is employed. Recently, new
approximations of the exponential matrix have been proposed based on other
families of polynomials, such as Hermite, Bernoulli or Euler, see [12–14].

2 Chebyshev polynomials and matrix exponential
approximation

In the scalar case, the Chebyshev polynomials are a useful tool in practically all
areas of applied mathematics. Chebyshev polynomials {Tn(x)}n≥0 of the first
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kind [15] are defined following explicit expressions:

T0(x) = 1

Tn(x) =

[n2 ]∑
k=0

 n

2k

(x2 − Ir)k xn−2k

= n

n∑
k=0

(
(−2)k(k + n− 1)!

)
(2k)!(n− k)!

(1− x)k , n ≥ 1


. (1)

Another alternative way of defining Chebyshev polynomials is using the three-
term-recurrence formula:

T0(x) = 1

T1(x) = x

Tk+1(x) = 2xTk(x)− Tk−1(x), k ≥ 1

 . (2)

Among many other properties, Chebyshev polynomials are orthogonal with
respect to the weight function w(x) = (1− x2)− 1

2 on the interval [−1, 1]. In this
sense, a function f(x) for |x| ≤ 1 can be developed in a series of Chebyshev
polynomials of the form

f(x) =
∑
k≥0

akTk(x), ak =
2

π

∫ 1

−1

f(x)Tk(x)(1− x2)−
1
2 dx, (3)

where Tk(x) is the kth Chebyshev polynomial, see [16–18] for details. For the
particular case of f(x) = ex, coefficients take the form a0 = J0(i) and ak =
2ikJk(−i) for all k ≥ 1, where i is the imaginary unit and Jk(x) is the Bessel
function of the first kind of order k. When we consider a matrix A ∈ Cr×r, ∥A∥ ≤
1, we have the development, similar to that used in [19], of the exponential matrix
given by

eA =
∑
k≥0

akTk(x) = J0(i)Ir + 2
∑
k≥1

ikJk(−i)Tk(A), ∥A∥ ≤ 1. (4)

Formula (4) that has been used by different authors in the field of compu-
tational physics and quantum chemistry, see for example [19–22], or for time
integration of the Schrödinger equation, see [23].

All these authors have obtained a polynomial approximation of the expo-
nential matrix that must be evaluated on a matrix. It is well known that the
Paterson-Stockmeyer method [24] is the most widely used technique to evaluate
matrix polynomials for the reasons explained in [25], although other alternatives
with a lower computational cost have recently appeared [26].

Nevertheless, in the literature related to polynomials Chebyshev, it is usual to
use the recurrence given in [16, p.125–126], known as the Clenshaw algorithm, to
evaluate polynomial approximations with Chebyshev polynomials. As described
in the following proposition, this recurrence relation provides a way of computing
finite sums of scalar Chebyshev polynomials.
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Proposition 1. Let {Tn(x)}n≥0 be the sequence of Chebyshev polynomials and
let Qn(x) be a polynomial of degree n to be evaluated defined by

Qn(x) =

n∑
k=0

akTk(x). (5)

Let x̄ be a real number and let us consider the following sequence {bk}n+2
k=0

defined by

bn+2 = bn+1 = 0,

bk = ak + 2x̄bk+1 − bk+2, k = n, . . . , 1

b0 = 2a0 + 2x̄b1 − b2.

Then, Qn(x̄) =
1

2
(b0 − b2).

Alternate versions of this algorithm can be found in [27,28]. If coefficients of
Qn(x) defined by (5) are scalars and x̄ is a square matrix A, the computational
cost of evaluating Qn(A), expressed in terms of matrix products, is n.

Note that by applying the expansion of the exponential function (4), we can
approximate eA as the evaluation of a polynomial Qn(A) expressed in (5). Thus,
the Clenshaw algorithm can be applied or, alternatively, we can write

eA ≈ Qn(A) =

n∑
k=0

akTk(A) =

n∑
k=0

αkA
k, (6)

and then evaluating (6) using the previously mentioned Paterson-Stockmeyer
method. As a result, fewer matrix products will be required and the results
could be more accurate.

3 The proposed algorithms

Two algorithms, called expm−clenshaw and expm−chebyshev, have been devel-
oped for computing the matrix exponential based on formula (4) together with
the scaling and squaring technique. The method proposed in [14] to calculate
the degree of the approximation polynomial n and the scaling factor s has been
used by both of them.

In the first algorithm, the approximation described in (4) to the matrix ex-
ponential is carried out using the matrix version of the Clenshaw algorithm.
In contrast, in the second algorithm, matrix A power series and the Paterson-
Stockmeyer method are employed for the cited approximation.

Both implementations have been compared with the code expm−new, based
on the Padé rational approximation for computing the matrix exponential [29].
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4 Numerical experiments

Numerical experiments have been performed on a testbed composed of hetero-
geneous matrices from three different categories:

Set 1: 100 diagonalizable matrices of dimension 128 × 128. They have been
obtained as the result of A = V ·D ·V −1, where D is a diagonal matrix with
complex eigenvalues and V is an orthogonal matrix such as V = H/

√
n,

with H being a Hadamard matrix and n its number of rows or columns. As
2-norm, we have that 0.1 ≤ ∥A∥2 ≤ 350.

Set 2: 100 non-diagonalizable complex matrices of size 128 × 128. These ma-
trices are computed as A = V · J · V −1, where J is a Jordan matrix with
complex eigenvalues whose modules are less than 5 and the algebraic mul-
tiplicity is randomly generated between 1 and 3. V is an orthogonal matrix
identically obtained to the previous set. As 2-norm, we have obtained that
3.58 ≤ ∥A∥2 ≤ 330.79.

Set 3: 36 matrices from the Matrix Computation Toolbox [30] and 9 from the
Eigtool MATLAB Package [31]. For that matrices, it results that 1 ≤ ∥A∥2 ≤
50708.3.

All numerical executions have been carried out by means of the MATLAB
version 2023a. Table 1 collects the percentage of cases in which the normwise
relative error committed by algorithm expm chebyshev is lower or higher than
that of the codes expm clenshaw and expm new. Respectively for the matrices of
each of our 3 sets, algorithm expm chebyshev improved expm clenshaw in 96%,
97%, and 88.89% of the cases. It also outperformed expm new in 98%, 93%, and
93.33% of the matrices. Clearly, these percentages indicate that expm chebyshev
is the code that offered the most accurate results.

Table 1: Improvement percentage among the different codes for the 3 sets of
matrices.

Set 1 Set 2 Set 3

E(expm−chebyshev) < E(expm−clenshaw) 96.0% 97.0% 88.89%

E(expm−chebyshev) > E(expm−clenshaw) 4.0% 3.0% 11.11%

E(expm−chebyshev) < E(expm−new) 98.0% 93.0% 93.33%

E(expm−chebyshev) > E(expm−new) 2.0% 7.0% 6.67%

Regarding the computational cost, Table 2 includes the total number of ma-
trix products required by the three codes in comparison. It is easy to appreciate
that expm new demanded the smallest number of products, closely followed by
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expm chebyshev. The quantity of matrix products required by expm clenshaw
were much higher. According to this number of products, Table 3 stores the time
spent on calculating the exponential of the matrices of each test set. As expected,
the highest time was for expm clenshaw. The time involved by expm chebyshev
was intermediate among those of the other two codes.

Table 2: Number of matrix products required by expm chebyshev,
expm clenshaw, and expm new for the test battery solution.

Set 1 Set 2 Set 3

P (expm−chebyshev) 1686 1687 574

P (expm−clenshaw) 6531 6550 2207

P (expm−new) 1498 1494 466

Table 3: Elapsed time, in seconds, in the execution of the distinct codes.

Set 1 Set 2 Set 3

T (expm−chebyshev) 0.43 0.45 0.45

T (expm−clenshaw) 0.90 0.92 2.12

T (expm−new) 0.49 0.49 0.24

Graphics for the normwise relative errors and the performance profile for the
different sets of matrices are shown in Figure 1. As can be appreciated in Figures
1a, 1c, and 1e, the three codes are numerically stable, since the relative errors
they present are below, or slightly above, the continuous line. Clearly, the lowest
relative errors corresponded to the code expm chebyshev.

Very significant are also the results related to the performance profiles, as
shown in Figures 1b, 1d and 1f, where expm chebyshev far outperformed the
other two codes for any of the matrix sets. On the other hand, expm clenshaw
performed better than expm new for Sets 1 and 3, but not for the matrices from
Set 2. In light of the results, the strategy of first approximating the exponential
function as a series of matrix powers from the Chebyshev polynomials and then
applying the Paterson-Stockmeyer method is preferable to employ the Clenshaw
algorithm. This conclusion can be also stated with respect to the possibility of
employing Padé approximants.
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Fig. 1: Normwise relative errors for sets 1 (a), 2 (c), and 3 (e), and performance
profiles for the same sets (b, d and f).



Matrix exponential based on Chebyshev polynomials 451

5 Conclusions

In general, the implementation based on Chebyshev polynomials is more accu-
rate than the one based on Padé rational approximants, specially in the case
of employing the Paterson-Stockmeyer technique to evaluate the matrix polyno-
mial corresponding to the exponential function. Nevertheless, the computational
cost may also be higher, particularly when using the Clenshaw algorithm.
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13. Defez, E., Ibáñez, J., Alonso-Jordá, P., Alonso, J.M., Peinado, J.: On Bernoulli
matrix polynomials and matrix exponential approximation. J. Comput. Appl. Math.
404, 113207, 2022.
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pute the exponential of skew-Hermitian matrices for the time integration of the
Schrödinger equation. Math. Comput. Simul. 194, 383–400, 2022.

24. Paterson, M.S. , Stockmeyer, L.J.: On the Number of nonscalar multiplications
necessary to evaluate polynomials. SIAM J. Comput. 2 (1), 60–66, 1973.

25. Fasi, M.: Optimality of the Paterson–Stockmeyer method for evaluating matrix
polynomials and rational matrix functions. Linear Algebra Appl. 574, 182–200, 2019.

26. Sastre, J.: Efficient evaluation of matrix polynomials. Linear Algebra Appl. 539,
229–250, 2018.

27. Jiang, H., Barrio, R., Li, H., Liao, X., Cheng, L., Su, F.: Accurate evaluation of a
polynomial in Chebyshev form. Appl. Math. Comput. 217 (23), 9702–9716, 2011.

28. Barrio, R.: Stability of parallel algorithms to evaluate Chebyshev series. Comput.
Math. Appl. 41 (10–11), 1365–1377, 2001.

29. Al-Mohy, A.H., Higham, N.J.: A new scaling and squaring algorithm for the matrix
exponential. SIAM J. Matrix Anal. Appl. 31 (3), 970–989, 2010.

30. Higham, N.J.: The matrix computation toolbox, 2002, http://www.ma.man.ac.uk/
∼higham/mctoolbox.

31. Wright, T.G.: Eigtool, version 2.1, 2009, http://www.comlab.ox.ac.uk/
pseudospectra/eigtool.

http://www.ma.man.ac.uk/~higham/mctoolbox
http://www.ma.man.ac.uk/~higham/mctoolbox
http://www.comlab.ox.ac.uk/pseudospectra/eigtool
http://www.comlab.ox.ac.uk/pseudospectra/eigtool


Advances on the Evaluation of Matrix
Polynomials Beyond the Paterson–Stockmeyer

Method

Jorge Sastre1

Institute of Telecommunications and Multimedia Applications, Universitat
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Abstract. This paper presents recent advances on the methods intro-
duced by the author for the evaluation of general matrix polynomials or
matrix polynomial approximations more efficiently than the Paterson–
Stockmeyer method. In general these methods are based on multiplica-
tions and sums of matrix polynomials. The computing cost of the matrix
polynomial evaluation methods is given in terms of the number of matrix
products evaluated, since they dominate asymptotically the overall cost.
Formulas for the evaluation of matrix polynomial approximations of de-
gree 25 = 32 at cost 5 matrix products are given, allowing to obtain
polynomial approximations reproducing the coefficients of the matrix
powers of matrix polynomial approximations up to degree 24.
Recently, evaluation formulas for polynomials of degree 16 allowing to
obtain polynomial approximations reproducing the coefficients of the ma-
trix powers of matrix polynomial approximations up to degree 15 were
given at cost 4 matrix products. On the contrary, in this paper we show
that evaluating polynomials of degree 16 at cost 4 matrix products is not
possible by using these methods.
Applications to the Taylor polynomial approximation of matrix func-
tions are shown. Their efficiency is compared with that of the state-
of-the-art evaluation methods for polynomial approximations, rational
approximations and methods based on the mixed rational and polyno-
mial approximations introduced by the author, providing a higher order
of approximation for the same cost.

Keywords: matrix polynomial, efficient evaluation, approximation, ma-
trix function

1 Introduction

Since the 70’s the Paterson–Stockmeyer (PS) method [2] was considered the
most efficient method for the evaluation of general matrix polynomials. This
method intends to minimize the number of evaluations of matrix products. The
rest of operations, i.e matrix sums and matrix multiplications by a constant,
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have cost O(n2), meanwhile the matrix product has cost O(n3), dominating
asymptotically the total computational cost. From now, the cost of one matrix
product evaluation will be denoted on by M .

The multiplication of matrix polynomials to double the degree at a cost of
1M was considered in [2] to produce polynomials or degree 2k, but this procedure
was discarded since the number of parameters needed to evaluate polynomials
of degree 2k grows exponentially as 2k+1, meanwhile the number of parameters
obtained by multiplicating polynomials grows quadratically, making not possible
to represent all polynomials of degree 2k even for low values of k [2, Sec. 2].
However, [1, Prop. 1] and [3, Sec. 3.3] gave formulas to evaluate general matrix
polynomials saving up to 1M and 2M , respectively, with respect to the Paterson–
Stockmeyer method, whenever the coefficient of the highest degree power of the
polynomial is not null.

For cost 3M the evaluation of general matrix polynomials of the maximum
possible degree 23 = 8 is solved in [1, Ex. 3.1], whereas the maximum polynomial
degree available at that cost with the Paterson–Stockmeyer method is 6.

For cost 4M the case of a Taylor based approximation of the matrix expo-
nential of degree 24 = 16 was shown in [1, Ex. 5.1]. However, in this example
the evaluation formulas given, i.e. (57)–(59) from [1, Ex. 5.1], had only 16 pa-
rameters allowing to evaluate a Taylor polynomial approximation up to degree
15. From (60) from [1] the coefficient of the term of degree 16 had a relative
error in absolute value 0.45 with respect to the respective matrix exponential
Taylor coefficient 1/16!. Therefore, in [8, Sec. 3.2] the order of approximation
of this Taylor based approximation was denoted by m = 15+ since it is more
accurate than the Taylor approximation of order 15 but less than the Taylor
approximation of order 16. The case for any kind of polynomial approximation
of order 15+ is solved in general in [3, Prop. 1] by using the MATLAB Symbolic
Toolbox code fragments 4.1 and 4.2 from [3]. Using a similar MATLAB code
it is possible to show that evaluating a polynomial of degree 16 with 4M is not
possible despite all the parameters more than 16 are introduced in the evaluation
formulas. For that purpose, following the nested procedure from (13) and (14)
from [8, Sec. 3.2] and in a similar way to Proposition 1 from [3, Sec. 3.1], let

y02(A) =±A2(
√
a8A2 + a7/(2

√
a8)A), (1)

y12(A) =

8∑
i=0

aiA
i, (2)

y22(A) =A(d4y12(A) + d3y02(A) + d2A
2 + d1A+ d0I) (3)

×(e4y12(A) + e3y02(A) + e2A
2 + e1A+ e0I)

f3y12(A) + f2A
2 + f1A+ f0I

= P16(A),

where Pm(A) =
∑m

i=0 biA
i is a polynomial of degree m and y22(A) uses all

the possible combinations of polynomials of degree 16, 8, 4, 2, 1, 0 intending to
evaluate polynomials of degree 16, P16(A), by using multiplications and additions
of matrix polynomials. MATLAB code
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http://personales.upv.es/jorsasma/Software/coeffspolm16NoSolution.m

uses variable substitution with the MATLAB Symbolic Toolbox in a similar
way to that in MATLAB code fragment 4.1 from [3, Sec. 3.1], defining first the
symbolic variables and equations (1)-(3). Then, the code equates the coefficients
of matrix powers Ai from y22(A) with bi from P16(A). Finally it solves the
variables in the following order a8, a7, ..., a1, f4 showing that, in general, the
system has no solution, see coeffspolm16NoSolution.m.

Moreover, in [3, Prop. 1] we solved general polynomial approximations of
degree 15+ making the coefficient of the term in degree 16 dependent on the
coefficients bi, i = 7, 8, . . . , 15, see line 35 and 36 of MATLAB code fragment

4.1 [3]. However, other coefficient different from the coefficient in degree 16 can
be selected which may have less relative error with respect to the corresponding
Taylor coefficient or the corresponding polynomial approximation coefficient, or
may have other interesting properties. For instance:

1. For the matrix exponential approximation of order 15+ said above the rela-
tive error in absolute value using the term of degree 8 is 0.06 instead of 0.45
obtained for the term of degree 16. Note that this kind of approximation
with an error in the term of degree 8 is able to reproduce the term of degree
16.

2. For the Taylor approximation of cosh(A) the relative error for the term of
degree 14 is 0.13 whereas the error using the term of degree 16 is 0.45.

3. For the matrix logarithm in [9] all the possible approximations of degree
15+ of the matrix logarithm were complex, whereas we have checked that
selecting the coefficient of degree 15 to be dependent on the others instead
of coefficient of degree 16, an approximation with real coefficients of order
14+ can be obtained, which also reproduces the Taylor approximation term
of degree 16.

Finally, since the 70’s rational approximations were considered more efficient
than polynomial approximations [5], although this was not always true in the
computation of matrix functions like the matrix exponential and the matrix
cosine as shown in the last years [6, 7]. With the new polynomial evaluation
method we showed that polynomial approximations now provide a higher order
of approximation than the state-of-the-art computational methods for rational
approximations for the same cost in terms of matrix products, and applica-
tions were given [1, 3, 8]. In this paper, we give evaluation formulas for matrix
polynomials providing the maximum polynomial degree 25 = 32 available for
cost 5M , with order of approximation 24+. These results improve the results
from [3, Prop. 2] where approximations of degree only 24 and order 21+ for the
same cost. Note that from [4, Tab. 3] the maximum order of approximations
available for that cost using the Paterson–Stockmeyer method is 12. For Padé
approximations the maximum available order of approximation is 12 at a higher
cost of 5.33M , see [1, Tab. 8], and for the mixed rational and polynomial ap-
proximations from [4] the maximum order available is 16 also at a higher cost
5.33M , see [1, Tab. 8].
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2 Evaluation of polynomial approximations of degree
25 = 32 and approximation order 24+ at cost 5 matrix
products

Following the nested procedure from (13) and (14) from [8, Sec. 3.2] and in a
similar way to Proposition 1 from [3, Sec. 3.1], let

y02(A) =±A2(
√
a8A2 + a7/(2

√
a8)A), (4)

y12(A) =

8∑
i=3

aiA
i, (5)

y22(A) =

16∑
i=3

biA
i (6)

y32(A) =A(y22(A) + d3y02(A) + d2A
2 + d1A) (7)

×(y22(A) + e4y12(A) + e3y02(A) + e2A
2 + e1A)

f4y22(A) + f3y12(A) + f2A
2 + f1A+ f0I,

where:

1. Using variable substitution with the MATLAB Symbolic Toolbox in a similar
way to that in MATLAB code fragment 4.1 from [3, Sec. 3.1], the coefficients
ai, i = 3, 4, . . . , 8, from (5) can be written in terms of coefficients bi from
y22(A) from (6). For instance,

a8 =
√
b16, (8)

a7 =
b15

2
√
b16

, (9)

a6 =
4 b14 b16 − b152

8 b16
3/2

, (10)

a5 =
b15

3 − 4 b14 b15 b16 + 8 b13 b16
2

16 b16
5/2

, (11)

where a8 = −
√
b16 could be selected to obtain another set of solutions for

ai, i = 3, 4, . . . , 8. Note that the corresponding expressions for a4 and a3
are too long and have been omitted.

2. y12(A) from (5) can be computed at cost 3M as shown in [1, Ex. 3.1].
3. Using (4), (8) and (9) it follows that y02(A) from (4) can be expressed in

terms of coefficients b16 and b15 of y22(A) from (6) as

y02(A) = ±A2(
4
√
b16A2 + b15/(4

3/4
√
b16)A), (12)

or

y02(A) = ±iA2(
4
√
b16A2 + b15/(4

3/4
√
b16)A). (13)
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4. y22(A) from (6) can be computed at cost 4M in a similar way to [3, Prop.
1] as

y22(A) =A((y12(A) + d′2A
2 + d′1A)(y12(A) + e′3y02(A) + e′2A

2 + e′1A)

+f ′4y12 + f ′3y02 − d′1e′1A2, (14)

where using a similar code to MATLAB code fragment 4.1 from [3, Sec.
3.1] it is easy to show that a8 cannot be freely set and depends on bi, i =
7, 8, . . . , 15, see code line 35. Then, using (8) it is possible to show that
b16 depends on the same variables as an equation given by a polynomial of
several variables in bi, i = 7, 8, . . . , 16 equated to zero. This equation is far
too long and has been omitted in this text.

5. From (4)-(7) it is easy to show that y32(A) can be written as a polynomial
of degree 32

y32(A) =

32∑
i=0

ciA
i, (15)

with a total of 25 parameters bi, i = 3, 4, . . . , 15, d1, d2, d3, e1, e2, e3,
e4, f0, f1, f2, f3 and f4, where b16 depends on bi, i = 7, 8, . . . , 15 as the
polynomial of several variables bi, i = 7, 8, . . . , 16 equated to zero indicated
in the previous item. This equation for b16 is added to the 25 equations
that arise when equating the coefficients of each power of matrix Ai, i =
0, 1, . . . , 24, from (7) with the coefficients ci, i = 0, 1, . . . , 24, of the desired
polynomial approximation of degree 24.

Hence, in a similar way as the Taylor approximation of order 15+ of the matrix
exponential from [8, Sec. 3.2] and [1, Ex. 5.1] it follows that y32(A) can be a
polynomial approximation of order 24+ or a polynomial approximation that
reproduces the coefficients of the matrix powers Ai, i = 0, 1, . . . , 24 of a given
polynomial approximation.

Using function vpasolve from the MATLAB symbolic toolbox Table 1 shows
a real solution for the coefficients from y22(A) and y23(A) from (6) and (7) for
a 24+ approximation of the Taylor series related to the matrix logarithm

− log(I −A) =
∑
i≥1

ciA
i, (16)

where c0 = 0 and ci = 1/i. For these approximation, the relative error in absolute
value of the terms of degrees 25, 26 . . . , 32, from (7) with respect to the corre-
sponding Taylor coefficients ci = 1/i are 0.66, 1.11, 0.87, 0.82, 0.94, 0.86, 0.86
and 0.96 respectively. These solution was found giving an initial guess real solu-
tion to the MATLAB function vpasolve.

3 Conclusions

In this paper new advances on the matrix polynomial evaluation methods from
[1] have been presented. Evaluation formulas for matrix polynomial approxi-
mations of degree 25 = 32, the maximum available for 5 matrix products, are
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c3 8.601783619558866×10−1 c16 3.565553990239603×10−2

c4 9.944287436604792×10−1 d1 7.375609514477606×10−2

c5 -3.074615389296343×10−2 d2 3.575370392498894×10−2

c6 1.592445908502036×10−1 d3 -2.621067300901111×100

c7 -1.011053421644045×10−2 e1 -1.049585293286937×100

c8 1.508589505550175×10−2 e2 -7.839707251483478×10−2

c9 1.603095162964840×10−1 e3 -1.263266986928881×10−2

c10 1.150108059224550×10−2 e4 2.551827558314212×100

c11 -4.977397388243390×10−2 f0 0

c12 6.56775568034843×10−2 f1 1

c13 1.329804039052917×10−2 f2 0.5− d1e1

c14 9.285680783553884×10−3 f3 6.054408747641660×10−1

c15 6.302431936136797×10−2 f4 5.888361184781625×10−1

Table 1: Coefficients of y22 and y32 from (6) and (7) for computing the matrix
logarithm Taylor approximation from (16) of order m = 24+.

given, allowing to reproduce the terms of degrees up to 24 of those polynomial
approximations. Their efficiency is compared to the Paterson–Stockmeyer meth-
ods, Padé rational methods, and the mixed polynomial and rational methods
from [4].

It is also shown that it is not possible to evaluate a general polynomial of
degree 16 with evaluation formulas (1)-(3) using multiplications and additions of
polynomials of degrees 16, 8, 4, 2, 1, 0. Despite the evaluation formulas have more
than the 17 needed parameters, they are not independent. Moreover, the option
to give evaluation formulas of matrix polynomial approximations of degree 16
reproducing the polynomial approximation coefficients of the matrix powers Ai

for i ̸= 16 is proposed, and examples of its advantages for the matrix functions
exp(A), cosh(A) and the matrix logarithm are given.
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Universitat Politècnica de València,
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Abstract. In light of the growing demand for online shopping and home
delivery services, the importance of optimizing electric delivery vehicle
routes in urban areas must be addressed. Such a measure is critical to
significantly reducing environmental pollution and improving operational
efficiency. To address this pressing issue, we propose a novel approach
for solving routing problems specific to electric vehicles. The proposed
method combines XGBoost with the utilization of synthetic data, intro-
ducing a rapid graph reduction technique to achieve efficient results.

Keywords: electric vehicles, graph theory, routing problems

1 Introduction

The shift from combustion engine vehicles to electric vehicles (EV) in the auto-
motive industry is leading to a positive environmental impact [7]. This transfor-
mation represents a crucial step towards a cleaner and more sustainable trans-
portation system. The introduction of electric cars significantly impacts several
Sustainable Development Goals (SDGs). It contributes to Goal 13 (Climate Ac-
tion) by reducing greenhouse gas emissions, Goal 7 (Affordable and Clean En-
ergy) by promoting renewable energy use, and Goal 11 (Sustainable Cities and
Communities) by fostering cleaner and more efficient transportation systems,
leading to improved urban air quality and healthier living environments.

For that reason, developing efficient routing solutions for EVs is crucial due
to their unique characteristics, such as sensitivity to slopes and the possibility
of routes with negative consumption. Optimizing routes considering these fac-
tors maximizes driving range and energy efficiency. In delivery services, where
problems like the Traveling Salesman Problem (TSP) arise, tailored EV routing
becomes even more vital. Fast and real-time routing algorithms are essential for
timely deliveries and optimal battery utilization, making EV routing indispens-
able for sustainable and efficient transportation solutions.
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In this work, we combine a machine learning model with a heuristic algorithm
for finding a solution to routing problems like the Travelling Salesman Problem
for an electric vehicle, where elevation data is considered for estimating energy
consumption. As we will see, this innovative approach significantly accelerates
the solution process while maintaining accuracy, allowing us to reduce the use of
more computationally demanding search algorithms in favor of faster machine
learning models. The resulting routing solutions efficiently and effectively address
complex city routing problems with driverless EVs, which can be applied to
transport, delivery, or car-rental business [5, 6].

In Section 2, we explain our methodology. In Section 3, we explain how we
generate synthetic data to train the ML predictive model indicated in Section 2.
Section 4 covers the model training process, and in Section 5, we showcase the
methodology validation.

2 Methodology

A city can be modeled with a directed graph where the nodes represent cross-
roads or intersections, and the edges represent streets and roads. The TSP con-
sists of giving a list of nodes on a connected graph and the distances (weights)
between them, finding the shortest possible path that visits each node just once,
and returning to the first node [10]. In this work, we propose to solve the TSP
on a reduced graph whose nodes are the ones in the statement of the TSP, and
the edge weights are estimated through machine learning. Figure 1 provides a
visual representation of this new graph for a routing problem involving 4 nodes
{3, 7, 15, 19}. After solving the problem in this reduced graph, we obtain the or-
der to visit the nodes for solving the TSP. Now, between each pair of nodes, the
real route is obtained in the whole graph through a shortest path algorithm like
Dijkstra or Bellman-Ford. This approach streamlines the process and optimizes
the solution while maintaining accuracy.

In the context of EVs, we prefer to estimate the edge weight relying on the
energy consumption instead of the distance, which lets us consider the energy
recovery of an EV. As in [11], we propose considering the energy consumption
between a pair of nodes by a machine learning (ML) predictive model instead of
assigning weights to the edges representing the energy consumption and using
classical search algorithms like Bellman-Ford [2, 8].

We generate a training dataset of random routes to train our ML model.
Each route consists of an initial and final node. For each node, we consider its
coordinates and its elevation. To estimate the energy required to go from one
node to another, we proceed as follows. We consider the whole city graph, where
each edge weight is estimated as the energy consumption of going from one
node to another. Once this graph is computed, we have applied Bellman-Ford
algorithm to compute the less energy-consuming path between the origin and
the final destination of each route. It is advisable to use Bellman-Ford instead
of Dijkstra as edges with negative weights may appear, as this is the case when
the street is going down. We will provide further details in Section 3.
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Fig. 1: Visual representation of the graph reduction for an instance of the TSP
problem involving nodes {3, 7, 15, 19}.

Suppose that the ML predictive model has been trained. Given an instance
of the TSP problem with n-stops, we create a new, simple complete, directed
weighted graph of n nodes representing the stops in the routing problem. This
graph has (n−1)n edges, where the edge weights are computed through the ML
predictive model. This reduced graph, considerably smaller than the original city
graph, allows a quicker computation of solutions. Once the solution is obtained,
we reconstruct the routes using the search algorithm to obtain the whole route
in the original graph.

3 Syntetic Data generation

We have generated random routes of synthetic data from Madrid to validate
our methodology. As we have said, they consist of the initial and final locations’
coordinates and elevation and the energy consumption required to go from the
initial to the final location by taking the less energy-consuming route obtained
using Bellman-Ford. We have obtained the city graph of Madrid through the
OSMmx library [3]. To enhance accuracy, elevation data from Spain’s National
Geographic Information Center [14] was integrated, and energy estimation fol-
lowed the methodology proposed by Graser et al. [9]. This energy estimation
can be improved if we add historical traffic data. For the case of Madrid, such
data can be obtained from Madrid Open Data [12]. If this is added, the initial
time the route starts has to be added as a characteristic of the consumption for
traveling between the initial and final locations.

Unlike generating data under static graph conditions, the study incorporated
real traffic data from October and November 2022. For each hour during this pe-
riod, a corresponding graph was generated, changing the edge’s maximum speed



466 Ahsini, Y. et al.

to the traffic’s velocity. This allows the models to extract energy consumption
variations due to the effect of traffic congestion.

The data generation process involved simulating 244,000 random routes within
the graph and computing the estimated energy consumption for each route us-
ing the Bellman-Fords algorithm. For every route, the latitude, longitude, and
altitude of both origin and destination points and the hour and day of travel
were recorded. Table 1 illustrates an example dataset generated for the city of
Madrid in October 2022.

Table 1: Examples of data generated for October, 2022. For each route we have
the longitude (lon), latitude (lat), and elevation (elv) of the origin (org) and the
destination (dest), the day and hour, and the energy required.

Day Hour Org lon Org lat Org elv Dest lon Dest lat Dest elv Energy used

10 0 −3.59920 40.36398 641.917 −3.73172 40.39640 621.366 2047.03

10 0 −3.71903 40.38655 605.261 −3.62685 40.40193 677.495 1739.99

10 0 −3.67403 40.39392 588.506 −3.70828 40.42033 652.923 996.85

10 0 −3.66224 40.42910 661.864 −3.66718 40.43910 685.921 295.73

10 0 −3.70515 40.57854 748.271 −3.70782 40.45727 715.779 2882.84

10 0 −3.77492 40.45370 621.177 −3.60805 40.40292 685.249 3340.12

Prior to model training, it is essential to conduct a brief data preprocess-
ing step. This involves converting categorical variables into numerical ones and
extracting weekday information, including whether the day is a working day.
Following the preprocessing step, the resulting dataset comprises 39 variables.
Among these variables are new binary representations for identifying working
days, encoding for hours (24 variables), and weekdays (7 variables).

4 Model Trainning

The model utilized to estimate the energy consumption is XGBoost, an machine
learning algorithm based on gradient boosting and tree-based ensemble learning
[4]. XGBoost and Scikit-Learn Python’s libraries were employed to train and
test the model parameters using cross-validation.

In XGBoost, the learning rate, max depth, and number of estimators are im-
portant hyperparameters. The learning rate controls how fast the model learns
from data during training, while the max depth limits the complexity of indi-
vidual trees, affecting their ability to capture patterns in the data. The number
of estimators determines the total trees in the ensemble, impacting model ac-
curacy and computation time. Properly tuning these hyperparameters is crucial
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to strike the right balance between model performance and generalization. To
ensure the correct selection of these hyperparameters, the dataset was divided
into 5 blocks to carry on a 5-fold cross-validation. Each configuration involved
training 5 models, using 4 blocks for training and 1 for testing. The average root
mean squared error (RMSE) of the 5 models generated for each configuration
was then computed. The errors of the various trained models can be found in
Table 2.

Table 2: Cross-validation results for the XGBoost model.

Learning Rate Max Depth Estimators Average RMSE

0.1 3 200 235.69

0.1 3 500 186.98

0.1 3 800 168.18

0.1 5 200 151.63

0.1 5 500 110.58

0.1 5 800 96.6

0.1 7 200 101.46

0.1 7 500 80.87

Finally, we train a last model using the best configuration hyperparameters
{learning rate = 0.1, max deph = 7, number of estimators = 500}. This model
was trained with 80% of the synthetic data, and the remaining 20% was used
for validation.

5 Validation

The proposed methodology’s validation uses the Traveling Salesman Problem
(TSP) as a benchmark. To solve the TSP, the 2-OPT algorithm with a Nearest
Neighbours initialization is employed, as described by Nuraiman [13]. We com-
pare the TSP’s solution using Bellman-Ford with the solution provided by our
hybrid method combining XGBoost with Bellman-Ford for reconstructing the
whole route.

As we can see, the difference in thersm of the energy estimation is of the
order of 10−4%, while the execution time is reduced in an almost 90%.
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Table 3: Comparison between node filtering with Bellman-Ford and XGBoost.

Bellman-Ford XGBoost Difference

Average energy consumption (kWh) 10.966 10.970 0.00036%

Average execution time (s) 19.25 2.19 -88.62%

6 Conclusion

The suggested approach has demonstrated its effectiveness in simplifying routing
problems for EVs. This leads to quicker and more efficient solutions for routing
challenges, paving the way for innovative, customized routing options that cater
to the distinctive features of EVs and are suitable for real-time applications.
Moreover, implementing this methodology introduces the potential to incorpo-
rate city traffic considerations, ensuring dependable solutions that always remain
reliable.

Furthermore, the positive impact of this paper extends to developing solu-
tions that promote the broader adoption of EVs in general. Significant barriers
that may have hindered the transition to a more sustainable fleet are overcome
by offering more efficient and effective approaches to electric vehicle route plan-
ning.
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Abstract. Misinformation during elections has become a significant
concern, as it can influence public opinion and undermine democratic
processes. In the context of Nigeria’s 2023 Presidential Election, UNICC
posed the challenge to build an automatic system capable of effectively
detecting false claims, hoaxes, and other forms of misinformation spread
on Twitter. The system consists of a fact-checking algorithm and a ma-
chine learning model trained on Nigerian political tweets using advanced
Natural Language Processing (NLP) techniques like BERT-style trans-
formers. By incorporating information on toxicities and emotions, achiev-
ing high F1-Scores of around 0.9. Also, a fact-checking database and
reusable resources were created, showcasing the effectiveness of NLP
techniques in detecting misinformation. The project offers additional
value by establishing an extensive fact-checking database and providing
resources for future projects. Monitoring the system’s performance in
real-time during upcoming elections can contribute to ongoing research
on misinformation detection and its impact on democratic processes.

Keywords: misinformation, elections, NLP, transformers, fact-checking,
machine learning.

1 Introduction

Misinformation refers to false information, regardless of whether or not it is
intended to mislead or deceive people. With the constant evolution of digital
platforms and technologies like social media, misinformation spreads farther,
faster, and deeper than truthful information where the most common issues are
related to immigration, gender, politics, equality and vaccination that can cause
real-world consequences like deterioration of the trust in journalism and science.
It is crucial to address this problem in order to create safe digital spaces. Mis-
information detection comes with several challenges, such as models becoming
outdated due topic/vocabulary mismatch between the new social media post
and the training data used to build models. Additionally, the availability of
annotated data is limited as it takes time and effort to compile an up-to-date
annotated dataset.

Our main focus will be tackling misinformation in Nigerian elections, where
the spread of false information can have serious consequences. Therefore our
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main goal is to help effectively detect and prevent false claims, hoaxes, and
other forms of misinformation from spreading on social media. To accomplish
this, we will develop a misinformation detection pipeline (an automatic system
capable of distinguishing fake news) consisting of two main components: a ma-
chine learning module and a fact checking module. This pipeline solves the issues
of misinformation detection mentioned above by re-training the model and an-
notating data semi-automatically. Previous research on automated fact-checking
models such as those by Kotonya and Toni [1], Nakov et al [2], provided valuable
insights about the process followed to automate the fact-checking tasks, and the
challenges faced in the process. We found that BERT-style transformers are the
most commonly used models by researchers.

The goals and values of this project align with the importance of combating
misinformation and promoting the use of accurate and reliable information in
society, which can have a positive impact on individuals, organizations, and
society as a whole. We hope that with this misinformation detection pipeline,
we can help individuals and organizations quickly and accurately identify and
correct false information, thereby preventing it from spreading further on social
media platforms, and strengthen trust between the users.

2 Methods

2.1 Data

Data extraction We collected data related to Nigerian elections from two
main sources; fact-checking pages and news outlets using Python’s Requests
package [3] and Selenium [4]. The fact-checking pages included iVerify Zambia
[5], Politifact [6], Africa Check [7], Dubawa [8], AFP [9], Lead Stories [10], The
Dispatch [11] and News Verifier Africa [12], while the news outlets were The
Guardian [13], Punch Nigeria [14], Daily Post [15], Sahara Reporters [16], The
Nation Online Nigeria [17], and Vanguard Nigeria [18].

Due to the disparity of the labels used in the different pages, we unified the
labels to False and True. Resulting in a total of 673 rows with 546 False claims
and 127 True claims. To address the imbalance of classes, we created an Evidence
Database of 22567 observations from the fact-checking pages and Wikipedia.
This is a new dataset with the evidence from fact-checking pages separated by
sentences and general information related to Nigeria extracted from Wikipedia.
We also labeled 2000 tweets using the GPT 3.5 Turbo API [19], but due to a
high number of False labels, we generated synthetic tweets to balance the classes.
We supplied five randomly selected sentences from the Evidence Database and
generated a tweet related to the information provided. The final dataset had a
total of 3004 observations, with 623 True and 1381 False labels. This data will
be used to build the Fact-Checking Module.

Data preparation Data preparation process involved merging individual CSV
files from different fact-checking pages into a consolidated dataset, extracting ev-
idences from it and creating an index for easy reference and information retrieval.
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Text data is converted to lowercase to ensure consistency, and inconsistencies or
missing labels are addressed by unifying classes and removing duplicates. Ad-
ditional features, like toxicity, sentiment, and subjectivity, are extracted using
libraries such as NLTK, Emo-RoBERTa, unbiased-toxic-roberta, and TextBlob
to gain deeper insights from the data.

2.2 Model building

Machine learning module The machine learning module consists of a ma-
chine learning model trained specifically to classify a claim according to the
presence of misinformation in it. The process can be divided into different steps
which we will explain in detail below:

1. Embedding and Similarity Computation. The text of the claim and
each retrieved document is converted into numerical vectors. This facilitates
the computation of similarity between the claim and the documents, We then
compute the cosine similarity between the claim embedding and each document
embedding, selecting the top 5 most relevant documents (evidence) for further
processing.

2. Preprocessing, Feature Extraction and Dataset Creation. We use
a pre-trained SBERT model [20], ’mitra-mir/setfitmodel-Feb11-Misinformation-
on-Media- Traditional-Social’, designed for misinformation detection on tradi-
tional and social media, to classify the claim based on the retrieved documents.
The data is preprocessed by concatenating the claim and the top 5 most rele-
vant evidence sentences, and then encoded using the SBERT model to obtain
embeddings. With that we create a structured dataset that includes the claim,
the top 5 evidence sentences, and the label. To enrich the dataset and improve
classification performance, we incorporate predictions from various models:

• Emotion detection using the ’arpanghoshal/EmoRoBERTa’ model [21] to
capture the emotional context of claims. This model detects 28 different
types of emotions in the text. We have included the probability scores for
each emotion in the dataset as this information can help in understanding
the emotional context of the claims.

• Toxicity detection using the ’unitary/unbiased-toxic-roberta’ model [22] to
identify and filter out toxic or biased claims such as general toxicity, insults,
identity attacks, etc. By incorporating this information, we can potentially
identify and filter out toxic or biased claims from the dataset.

3. Prediction and explanation. The best-performing model is selected
based on its accuracy on the validation set. This model is then used to classify
the claim as true or false based on the retrieved evidence. We then built models
to provide an explanation for the classification of the claim. We made use of
Explainable AI and GPT3 to do so, which are explained in detail below:
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3.1. Explainable AI. In the context of Nigerian elections, Explainable AI
(XAI) is crucial to determine which features the model is using to determine
whether a claim is true or false.

3.2. GPT3. Since we wanted to obtain a comprehensive explanation for
the label assigned to a claim, we opted for GPT-3 in the end. We provided
GPT-3 with the claim, the top 5 pieces of evidence and the predicted label
obtained from the classification models.

Fact-checking module We built a fact-checking module, which consists of a
rule-based module that emulates the behavior of a journalist during the process
of fact-checking [23]. To build the fact-checking module, we explored many dif-
ferent approaches which we discuss below:

• Emotion Analysis. This approach involves analyzing the sentiment of the
text to determine if it contains misinformation. Sentiment analysis can be
used to identify the emotional tone of the text and determine if it is consis-
tent with the facts presented in the article.

• Decision Tree Analysis. We created a decision tree by analyzing our
database of known true and false articles and identifying the features that
distinguish them. The decision tree is built by selecting a feature that it
believes is important in distinguishing true and false news articles. It then
splits the data into two groups based on this feature and repeats the process
for each group until we have a tree that accurately classifies the data. We
then repeat the process for each group until we have a tree that accurately
classifies the data. Once we have created the decision tree, we can explore it
backwards to see the rule that it applies in each split. This can help us to
understand the features that are most important in distinguishing true and
false news articles and to identify patterns of misinformation.

With these ideas and using the data previously labeled, we built our no-
machine-learning algorithm.

Evaluation The dataset is split randomly into training and validation sets
with a 80-20 split ratio. Various classification algorithms were trained on the
training set using a 10-fold cross validation, and the model’s hyperparameters
were optimized using a parameters grid and repeating the process of training
with a of these parameters. The performance of these models is then evaluated
on the validation set using accuracy as the performance metric. However, to
gain a deeper understanding of the model’s performance and potential areas of
improvement, we also considered other metrics such as F1-score, that is used
to give more importance to costly misclassifications. Different models have been
compared, and they are described in the table of section 3.2 where results are
discussed.
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3 Results and Discussion

3.1 Machine Learning Module

We conducted a comprehensive evaluation of different approaches. We compared
the performance of the following models:

• Baseline Model: The ’roberta-fake-news’ model in its original configuration.

• ’roberta-fake-news’ Embeddings generated by ’roberta-fake-news’ model. +
Classical Classifiers such as SVM, MLP, and RF.

• Fine-tuning ’roberta-fake-news’ + CNN with Evidence, Sentiment, and Tox-
icity, We fine-tuned the ’roberta-fake-news’ model using a 1D Convolutional
Neural Network (CNN) to incorporate evidence, sentiment, and toxicity in-
formation. We evaluate the impact of considering different numbers of evi-
dence sentences (k = 0, 1, 2, 3, 4, 5) on the model’s performance, as shown
in Fig.1.

The models have been trained on a dataset consisting of 2835 claims, of which
1577 are labeled as true claims and 1258 as false claims. These claims were used
to train the models and teach them patterns and relationships between tokens to
make predictions on new, unseen data. After training, we evaluated the models’
performance on a separate test set containing 315 claims. Among these claims,
171 were labeled as true claims and 144 as false claims.

Attention Between Claims and Evidences is All You Need: Tackling
Misinformation in Nigeria with Transformers and 1D Convolutional
Networks

We will perform fine-tuning on the ”roberta-fake-news” model, which has 125
million trainable parameters and 12 attention heads. Our goal is to adapt it
specifically to the task of misinformation detection in Nigeria. The input to the
transformer model will consist of tokens representing the claim we want to verify,
followed by a special separation token ”SEP”, and tokens representing the top
”k” (initially 5) evidence sentences that are closest to the claim. To determine
these closest evidence sentences, we will calculate the cosine similarity between
the embeddings using the ”all-MiniLM-L6-v2” model.

Instead of using the ”[CLS]” token for classification, we propose applying
one-dimensional convolutional operations with a specific number of filters. Sub-
sequently, we will apply one-dimensional max pooling layers successively until
we obtain a flattened vector with the final outputs.

This approach aims to capture relationships between the claim tokens and
the evidence tokens to predict whether it is misinformation or not. By leveraging
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Fig. 1: Fusion of Transformer, 1D Convolutional Networks, and Variable Con-
catenation for Misinformation Detection in Nigeria

the attention capabilities of the transformer and utilizing one-dimensional con-
volutional operations, we aim to capture relevant features that can help discern
between accurate and misleading information.

After obtaining the representation from the convolution process, we concate-
nate it with a vector associated with the outputs of a dense layer applied to other
types of variables that we have considered. These variables include emotions ex-
tracted from the claim using the EmoRoBERTa transformer. EmoRoBERTa is
trained on the GoEmotions dataset, which consists of 58,000 Reddit comments
labeled for 27 emotion categories, including Neutral.

Additionally, we have incorporated various toxicity variables using the unbiased-
toxic-roberta transformer. This model is trained on The Civil Comments dataset,
which comprises approximately 2 million public comments from the now-closed
Civil Comments platform. The dataset is annotated for toxicity and other at-
tributes, including identity labels, to facilitate research on improving online con-
versations. Moreover, the model takes into account different identity labels.

By incorporating these emotion and toxicity variables into the model ar-
chitecture, we aim to capture additional contextual information and potential
correlations with misinformation detection in Nigeria.

3.2 Fact-checking module

In order to build the fact-ckecking module we have tried different approaches
besides the one explained in Section 2.2.2.

The first approximation was to clean the text removing hashtags and stop-
words and vectorize it using a TDF-IDF representation and using a decision
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tree to classify whether the claim is True or False decided to try with a decision
tree and classify. Surprisingly, we obtained a F1-score of around 0.85, which is
a pretty good result keeping in mind that we only use text as the input with no
other features.

After, we thought of including sentiment analysis using the NLTK library in
Python (sentiment intensity analyzer) and from the TextBlob library we used the
sentiment.subjectivity module and the sentiment.polarity, to be able to classify
the tweet as positive, negative or neutral. We combined both data frames and
ran a Grid Search to find the best hyperparameters for the tree, hoping for
better results. Unfortunately, results were a bit below the approach where we
used just text (getting around 0.82 of F1-score), but we decided to represent the
tree because it can give us more information.

We also created a model using just sentiments, and even though the predictive
capacity of the model is a bit better than randomness, we obtained interesting
conclusions from the polarity variable. We observed that positive tweets are
classified as True and negative ones as False. Figure 8 shows the tree generated
by the model including text and sentiment.

Using a Decision Tree with a maximum depth of 4 we get a F1-score of 0.824.
We can observe that the first and most important splits are word based using
words like “elections” or “Nigeria elections”. Sentiments come after in the splits
of the tree and we can deduce that they are less important for the classification.

3.3 Results

The combination of embeddings and classical classifiers, such as SVM, MLP, XG-
Boost, and RandomForest, proved to be much more effective. These approaches
achieved F1-Scores close to 0.9, indicating good performance in detecting mis-
information.

There was a beneficial effect when adding information on toxicities and emo-
tions to the embeddings and classical classifiers models.

The fine-tuning technique using a combination of CNN and k evidences,
where k represents the number of evidences used, also proved to be effective.
The obtained F1-Scores were around 0.9. It was observed that adding evidence
to the claims significantly improved the model’s performance, increasing the F1-
Score from 0.81 (without evidence) to almost 0.9 (with the closest evidence based
on cosine similarity).

As the number of evidences (k) increased, the model’s performance contin-
ued to improve, reaching an F1-Score of 0.907. This indicates that providing the
model with more supporting information enhances its ability to detect misinfor-
mation more accurately.

3.4 Deployment

We deployed our misinformation detection pipeline through a prototype ap-
plication, which aims to address the objectives of the project. Our prototype
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Approach Model F1-Score Precision Recall Cost

Baseline roberta-fake-news 0.537 0.460 0.643 1717

Embeddings + Classical Classifiers

SVM 0.907 0.907 0.912 265

MLP 0.870 0.858 0.883 390

XGBoost 0.884 0.879 0.889 343

RandomForest 0.910 0.938 0.883 240

Embeddings + Classical Classifiers with emotions and toxicities

SVM 0.907 0.907 0.912 265

MLP 0.897 0.900 0.895 296

XGBoost 0.904 0.897 0.912 285

RandomForest 0.924 0.924 0.924 221

Fine-tuning + CNN + k Evidences with emotions and toxicities

k=0 0.807 0.912 0.725 444

k=1 0.898 0.920 0.877 308

k=2 0.886 0.908 0.865 325

k=3 0.897 0.900 0.895 297

k=4 0.905 0.916 0.895 273

k=5 0.907 0.927 0.889 276

Table 1: Performance Evaluation of Misinformation Detection Approaches
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application consists of a user-friendly interface, similar to a chatbot, that allows
users to input a claim and receive a detailed analysis of the veracity, including
the sentiment and toxicity analysis to explain why our model is predicting that
label. It is created to help human fact checkers to reduce their work time in
searching and finding evidences to put a label on each claim, giving them some
reliable model to lean on. The goal of this is not to replace human labor in this
kind of task. A human team is needed to supervise the model.

By automating the detection process and providing detailed explanations for
the assigned labels, our prototype addresses the challenges of outdated models
and the availability of annotated data, which is the main value that we wanted
our project to have.

4 Conclusion

First of all we got to mention the easy, fast and efficient way GPT-3 has given
us to label the unlabelled data. When data is scarce or the labeling task is so
tedious, it is a pretty good option. It could work even better with the supervision
of human experts. We observed that state-of-the-art transformers and vector
representations like TF·IDF with simple models perform really well. Sentiment
analysis can be very useful to improve the explicability of our models and help
the final user understand the decision taken for each instance by certain models.
Definitely, misinformation detection is a very challenging issue, but with a good
understanding of the problem, hard work, fresh ideas, initiative and a proactive
team, everything is possible.
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Abstract. We are the resistance, we are the future. In a universe reigned
by caos where the Empire rules with tyranny, we fight for the weakest.
It has come to our knowledge that they have created a weapon, which
has the power to destroy entire worlds and turn them into dust, named
the Death Star. However we have discovered that we do have a chance to
counterattack and destroy it. Our mission is to infiltrate the computer
system and destroy it from within, but to do so we must solve math
problems of great difficulty. This is the reason we have an ace up our
sleeve: a numerical method. Will we be able to destroy the Death Star
and save the universe?

With this preposition, from the subject of numerical resolution of linear
and no linear systems we will study the convergence and behavior of a
family of numerical methods and discover the vast universe behind it.

Keywords: numerical analysis, fixed point, critical point, error equa-
tion, parameter plane, dynamic plane and rational function

1 Study of The Family of Methods

Given an initial estimate x0, the iterative expression is

yk = xk −
f(xk)

f ′(xk)

xk+1 = yk −
f(yk)

(1− α)f [xk, yk] + αf ′(xk)

where α is a free parameter (real or complex)

1.1 Extension to systems of equations

Is the assigned method directly extensible to systems of equations?
Analyzing the expression of our family for equations, we observe that in the
denominator of the second equation, when we pass to systems we will obtain a
sum of matrices since we will have the divided difference operator and a Jacobian
matrix and we will be able to perform its inverse directly because we will not
have vectors. That is why we can directly extend the method to a system of
equations. This is the result:
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F (x) = 0

y(k) = x(k) − [F ′(x(k))]−1F (x(k))

x(k+1) = y(k) − [(1− α)[x(k), y(k);F ] + αF ′(x(k))]−1F (y(k))

1.2 Family Error Equation and Order of Convergence

We know that in equations the order of a method is at most 2d−1 where d are
their functional evaluations, in this case for our method d = 3 since we have
f(x), f ′(x) and f(y), then the order of our family will be at most 4, this order
at moving to systems may be lower or remain the same.
The development carried out in Mathematica provides us with the following
results:
General error equation: ek+1 = (1 + α)C2

2e
3
k + (−((3 + 5α + α2)C3

2 ) + (3 +
4α)C2C3)e

4
k +O(e5k)

With this expression of the result we can see a very important thing and that is
for α = −1 the coefficient that is with e3k will be canceled and the method will
be order 4.
With α = −1 we obtain this error equation: ek+1 = (C3

2 − C2C3)e
4
k +O(e5k)

Order of convergence:

– α ̸= −1 −→ Order of convergence 3
– α = −1 −→

Order of convergence 4

With the demonstration done by hand taking into account the non-commutativity
of the operators we obtain this error equation: e(k+1) = (1 + α)C2

2e
3
k + ((2 +

2α)C2C3 + (1 + 2α)C3C2 + (−3− 5α− α2)C3
2 − 3C2C3 + 3C3C2)e

4
k +O(e5k)

With the results obtained we can conclude two things: the order of convergence
obtained in Mathematica is preserved and as we had seen previously, the order
of convergence is not the same for all values of alpha.
α ̸= −1 −→ Order of convergence 3
α = −1 −→ Order of convergence 4 and the method with that value will be an
optimal method.

1.3 Rational Function

Which is the rational function associated with our method resulting from apply-
ing it to p(x) = (x−a) · (x− b)? And after applying the Möbius transformation?
What we have done is find the polynomial of second degree and its derivative and
thus calculate the rational function associated with our method, where we write
the expression of our family with the polynomial. First we calculated the first

step which was, yk = xk − f(xk)
f ′(xk)

, next we calculate the finite differences factor,
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which by definition is dd = f(xk)−f(yk)
x−y , to be able to calculate the operator of

our family at the end xk+1.

Rational Function Obtained: RC = −ab+x2

−a−b+2x .
Now we apply the Möbius transformation to what is obtained as a rational func-
tion (RC). This is used in order to obtain the rational operator without variables
a and b. As we see, we have obtained what we expected, our rational function
only depends on x and alpha.

Cayley Test: An iterative method is said to satisfy the Cayley test if its asso-
ciated rational function, after the Möbius transformation, is zn, n ∈ N.
Why have we announced this result? Because when we apply the Möbius trans-
formation to α = −1 the Cayley test is fulfilled since we have x4, which assures
us furthermore, the method for α = −1 has convergence order 4. It is also very
good for the stability of the method since we will not have free critical points.
For α ̸= −1 we see that in the numerator the rational operator has a factor x3,
which ensures that for all α ̸= −1 the order of convergence of our family is 3.

So in conclusion the order of convergence for α = −1, is 4 and for α ̸= −1,
is 3.

We also corroborate what was previously obtained with Mathematica, in the
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demonstration of the order. Finally we check with Traub’s Theorem the order
of convergence. As we see, the first and second partial derivatives with respect
to any α are null, and the third is different from 0, therefore order 3. The first,
second and third partial derivatives are zero and the fourth is different from 0,
therefore for α = −1, the order is 4.

1.4 Fixed Points

Are all the fixed points directly related to the roots of the polynomial? Are there
strange fixed points? We are going to calculate and analyze the stability of all
fixed points, clearly indicating the reasons why they are said to be attractors,
repellers or parabolics.
To obtain the fixed points we must equate the rational function R obtained in
the part before to x and solve the equation.

We have to see if infinity is also a fixed point. For this we define the inverse of
rational operator and if 0 appears, in this case it will be infinity.

Not all fixed points are directly related to the roots of the polynomial. The fixed
points that are related are 0 and infinity, which are roots of the polynomial sec-
ond grade. There are three strange fixed points, they are 1, ex1 and ex2.

We observe that the points ex1 and ex2 are conjugate. The strange fixed point
z = 1 comes from the divergence of the original method, which when applying
Möbius becomes a fixed point. Now we are going to analyze the stability of the
fixed points. To do this we define the derivative of the rational operator.
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For z = 0, the operator at the fixed point z = 0 is canceled for any value of
α so it will be super attractor, this corroborates what was concluded in the pre-
vious section, where we had said that zero was the root of the polynomial, that
is why its derivative is 0.

For z = ∞, to analyze this fixed point, we define the derivative operator of
the inverse of the rational operator. For any value of α the operator is canceled,
so the fixed point z = ∞ is a super attractor, this corroborates what was con-
cluded in the previous section, where we had said that infinity was the root of
the polynomial, that is why its derivative is 0.

For z = 1, what is this fixed point? To do this, we must evaluate for which
values of α the fixed point z = 1 is a super attractor, attractor, repulsor or
neutral or parabolic. We will carry out the demonstration to know when it is
an attractor, but with the final result we can apply it directly to the rest of cases.

Demonstration

|2 + 2

2 + α
| < 1

|2(2 + α) + 2

2 + α
| < 1

|2(2 + α) + 2| < |2 + α|

Now we replace α = c+ id c, d ∈ R

|2(2 + (c+ id) + 2| < |2 + (c+ id)|√
(6 + 2c)2 + (2d)2 <

√
(2 + c)2 + (d)2

32 + 20c+ 3c2 + 3d2 < 0

32

3
+

20

3
c+ c2 + d2 < 0

−4

9
+ c2 + (

10

3
)2 +

20

3
c+ d2 < 0

(c+
10

3
)2 + d2 <

4

9

(c+
10

3
)2 + d2 < (

2

3
)2

|α+
10

3
| < 2

3
□

From this demonstration we obtain very interesting information: for α = −2,
z = 1 is not a fixed point.
The section where we can see the stability of the fixed point will be in the
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circumference (a+ 10
3 )2 + b2 = ( 23 )

2, in the center circle x = (− 10
3 , 0) and radius

r = 2
3 .

Let’s see for which value of α z = 1 is a super attractor fixed point.

|2 + 2

2 + α
| = 0

|2(2 + α) + 2

2 + α
| = 0

|2(2 + α) + 2| = 0

|6 + 2α| = 0←→ α = −3

Therefore, we can now classify the stability of the fixed point z = 1 according
to the α values:
If |α+ 10

3 | <
2
3 , the point z = 1 is a fixed attractor point and if α = −3 then it

will be a super attractor fixed point.
If |α+ 10

3 | >
2
3 , the point z = 1 is a repulsor fixed point.

If |α + 10
3 | =

2
3 , the point z = 1 is a neutral or parabolic fixed point. In the

graphical representation we have a circumference of center x = (− 10
3 , 0) and

ratius r = 2
3 . The gray area is where the z = 1 fixed point is repulsor. In the

same circumference is when it is neutral or parabolic and in the orange zone it
is when it is an attractor and at the tip when the derivative operator is worth
0, that is, it is a super attractor, specifically at α = −3. We will be interested in
selecting values of α for which z = 1 falls in the gray zone and is repulsive and
thus the only ones attractor fixed points are 0 and infinity.

For z = ex1 ∧ z = ex2 we have obtained directly the expression by which
we can classify the stability of the fixed points ex1 and ex2.
Let’s see when the point is super atractor.

|α+ 5| = 0←→ α = −5

If |α + 5| < 1, z = ex1 y z = ex2 are fixed attractor points and if α = −5 then
the strange fixed points ex1 and ex2 are superattractors.
If |α+ 5| > 1 the points z = ex1 and z = ex2 are repulsor fixed points.
If |α + 5| = 1 the points z = ex1 and z = ex2 are neutral or parabolic fixed
points.
We can see everything studied about these strange fixed points represented in
the following graph.
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We can observe the circle with center x = (-5, 0) and radius r = 1. If we fall in
the gray area the points ex1 and ex2 will be repulsor. If we fall on the circle, then
they will be neutral or prabolic and if we fall in the orange zone it will be an
attractor, and if we fall at the peak, α = −5, they will be super attractors. As we
have commented previously, we will be interested in falling into the gray zone so
that they are repulsor and thus have only 0 and infinity as fixed attractor points.

Now we will be interested in finding the alpha values where the strange fixed
points they match.
We observe that ex1 and ex2 coincide for the values of α = −4∧0. Whith α = −4
take the value of z = 1, it is a neutral or parabolic point and with α = 0 take
the value of z = −1 which is a repulsor point. We are going to see if with some
value of α the strange fixed points values may coincide with 0 or infinity and we
found that they will never coincide, so that is very good for our method.

So we can conclude:
For α = −4 the strange fixed points ex1 and ex2 coincide with the fixed point
z = 1 and it is a neutral or parabolic point.
For α = 0 the strange fixed points ex1 and ex2 are the point z = −1 which is a
repulsor point.
The strange fixed points ex1 and ex2 never coincide with the fixed point z = 0
nor z =∞
To finish the question we are going to see what happens with our α = −1 where
the method was of order 4. For α = −1 the strange fixed points ex1 and ex2 are
repulsive and for z = 1 it is also repulsor, so α = −1 is a very good value for
our family since the only fixed points will be 0 and infinity.

1.5 Critical Points

We are going to calculate the critical points of the operator R. Are all the crit-
ical points directly related to the roots of the polynomial p(z) or are there free
critical points?
To see the critical points we must set the derivative operator of the rational
function equal to zero and solve the equation.
In Mathematica we have solved the derivative operator equal to zero and we
have obtained as critical points z = 0, and two free critical points.

We also solve the operator equation derived from the inverse of the rational
function equal to zero where we obtain that z =∞ is also a critical point.
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The answer to the question proposed is no, since the only critical points di-
rectly related to the roots of the polynomial are 0 and infinity, and if that we
have free critical points that are pce1 and pce2, which are also conjugate. But
it should be emphasized that for α = −1 there are no free critical points since
the denominator of these is cancelled. This corroborates what was obtained be-
fore where we had obtained that α = −1 satisfied the Cayley test and therefore
would not have free critical points.

Is important that pce1 and pce2 will have the value of 1 with α = −3 and
α = −2, and the value of -1 with α = 0 and α = 1. We also checked to see if
there were more alpha values so these points coincide but there are none. Also,
the critical point z = −1 will be a pre-periodic point of 1.

With α = −3 the free critical points coincide with the fixed point z = 1 and for
this value exactly the point will be super attractor.
With α = −2 the free critical points coincide with z = 1 but exactly at this case
was the value for which z = 1 was not a fixed point.
With α = 0 and α = 1 we obtain the critical point z = −1 which is always
pre-image of the strange fixed point z = 1 where will be a point.
Also, any value of α of the free critical points coincide with the 0 or infinity.

1.6 Analisis Of Dynamic Planes Of Different α Values

For α = −1 : Op = x ∧ 4, Fixed Points = 0, 1, -0.5-0.8660i, -0.5 + 0.8660i,
Critical Points = 0, 0, 0 and Attractor Points = 0.

With the Op we corroborated what was previously studied where we saw that
for this value of α the method fulfilled the Cayley test and we observed that
there is no free critical point. We clearly observe that there are no black areas in
the dynamic plane. The critical points that are 0 and infinity are in the basins
of attraction of 0 and infinity.

For α = −4 : Op = −(x ∧ 3 ∗ (x − 3))/(3 ∗ x − 1), Fixed Points = 0, 1, 1,
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1, Critical Points = 0, 0.5195, 1.9250, Attractor Points = 0.

For this value of α the strange fixed points ex1 and ex2 coincide with the point
fixed z = 1 and this point was neutral or parabolic.
In this dynamic plane we do have black regions. The black areas correspond to
a basin where there may be strange fixed points attractors or periodic attractor
orbits. The critical point z = 0 is in the corresponding orange basin of attraction
to the supertractor fixed point z = 0. The critical point z = ∞ is in the blue
basin of attraction that corresponds to the fixed point super attractor z = ∞.
The free critical points z1 = 1.925 and z2 = 0.5195 are in the black region and
it is something negative for the stability of the method since in the black areas
there may be attractor orbits or strange attractor fixed points but it should be
noted that in dynamic sense provides you more interest.

1.7 Parameter Plane

The existence of the red regions is directly related to the values of the parameter
α, in this case if it is red it means that the free critical point with that The value
of α will converge to 0 or infinity and therefore in the dynamic planes we will
find stable schemes. The wider the red areas the better since we will have more
values of α for which the family will present stable schemes.
The existence of black regions is also directly related to the values of the param-
eter α, in this case if it is black it means that the critical point free with that
value of α will end up at a strange fixed point or attractor or an attractor orbit
and therefore in the dynamic planes we will find unstable schemes.

We are going to generate the parameter planes of our free critical points.

In this case we only have two and since they are conjugated they will have the
same parameter plane so we will only have to generate a parameter plane.
We have to identify the regions of the parameter plane that correspond with the
stability of the strange fixed points, we look for the center circle x = (-5, 0) and
radius 1 that we had obtained before.

Now we are going to search for the period 3 orbit. We are going to search
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in the black areas, since as we have commented is where unstable schemes will
appear in dynamic planes and therefore black areas will surely appear that will
be where our periodic orbits will be.
We have obtained an orbit of period 3. The dynamic plane is for
α = - 5.603736128236745 - 1.007422934648581i. The dinamic plane gave us one
node of the orbit, z = 3.7153 + 1.1343i. Therefore by Sharkovsky’s Theorem,
the existence of period 3 orbits guarantees the existence of orbits of any period.
This something negative for the stability of the method since it may be that our
method does not converge but that in the dynamic sense gives it more interest.

1.8 Conclusion

We have been able to observe that the divided difference can add a certain dy-
namic interest to the family since it allows us to obtain a great variety of different
methods and not only varieties that start from the Traub method. Numerically
speaking it has much interest because with the study carried out in general the
method is very stable, where generally, we obtain the solution and everything
within optimal conditions, that is, with correct behavior of the convergence rates
and the ACOC. It is also worth noting that there are several values of α that
satisfy the Cayley test which is not very common and is also very good for our
family since we are talking about optimal methods.

Also, thanks to our family of numerical methods we have been able to destroy
the Death Star and save the universe.
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Universitat Politècnica de València, Camino de Vera, s/n, 46022-Valencia, Spain,

jricest@cam.upv.es

Abstract. Motivated by the second course of numerical analysis in the
mathematics degree, this work presents a Matlab® App Designer ap-
plication that facilitates the interpretation of Parameter Planes and Dy-
namical Planes based on some families of iterative methods. These visual
representations play a crucial role in the correct analysis of the dynami-
cal behavior of these families. One of the purposes of this resource is its
use in teaching.

Keywords: Parameter planes, dynamical planes, non-linear equations,
families of iterative methods, dynamical behavior, Matlab App Designer

1 Introduction

In the first and second courses of numerical analysis in mathematics, we, the
students, learn the importance of using iterative methods to solve non-linear
equations, f(z) = 0, with f : C→ C.

First we are taught Newton’s well-known method. We soon become experts
in multi-step methods such as Traub’s, Chebyshev’s, Halley’s and others. Not
very late we are taught to study families of iterative methods by introducing
complex parameters, to analyse in depth the order of convergence, the efficiency
index, the approximate computational order of convergence, etc... Finally, we
study in detail rational functions derived from these families, whose dynamics
are not well known.

In the literature, interesting dynamic planes are created to study specific
families that contain some periodic behaviour and other anomalies. However,
unlike the dynamic planes, the parameter planes associated with a family of
methods allow us to understand the behaviour of the different members of the
family of methods and help us to choose a particular one.

In teaching, Matlab is used to program these families and draw the dynamic
and parameter schemes. This programme has an exponential learning curve that
enables students to go beyond their initial knowledge. Therefore, the aim of the
present work is to create a resource in Matlab App Designer that facilitates the
interpretation and drawing of the dynamic diagrams.
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The rest of the paper is structured as follows. Section 2 is dedicated to the
presentation of basic concepts of stability of the methods introduced by complex
dynamics. In this sense, the rational function resulting from the application of
families to quadratic polynomials is studied and the fractals generated in the
planes are explained. In Section 3, a flow chart is presented, as well as the
families used and the different functions that have the computational resource.
Finally, Section 4 summarises the conclusions and the objectives achieved and
to be achieved.

2 General complex dynamics features

Some basic concepts of complex dynamics are introduced in this section. First,
a quadratic polynomial is applied to the families of iterative methods for solving
non-linear equation. A rational operator is obtained and its dynamic behaviour
is analysed as a function of the initial estimation. Finally, the parameter and
dynamic planes and the procedure for generating them are defined.

2.1 Rational Operators in Quadratic Polynomials

Given a family for solving non-linear equations depending on the parameter
α ∈ Ĉ. Let p(z) = (z − a)(z − b) be a polynomial defined on Ĉ and, a, b ∈ Ĉ
the roots of the polynomial. Therefore, Rα,a,b : Ĉ→ Ĉ is defined as the rational
function, defined on the Riemann sphere, obtained by applying to the family the
polynomial. Let us recall that it depends on the parameter of the family and on
the roots of the polynomial.

To obtain a one-parametric operator, we apply the Möbius transformation.

h(u) =
u− a
u− b

, [h(u)]
−1

=
ub− a
u− 1

(1)

It is obtained a rational operator associated with the family that does not
depend on a and b, only on the parameter, Rα(z) = (h ◦Rα,a,b ◦ h−1)(z). Then
the dynamics of the family on every quadratic polynomials can be studied by
analysing it. In addition, the Möbius transformation h maps its roots a and b to
z = 0 and z =∞, respectively.

2.2 Basics on Complex Dynamics

Based in [2] we will examine some fundamental concepts of complex dynamics,

which will be subsequently defined and applied for further use. Let Rα : Ĉ→ Ĉ
be the rational function defined on the Riemann sphere. The orbit of a point
z0 ∈ Ĉ is given by the set of its images by Rα as follows,

O(z0) =
{
z0, Rα(z0), R

2
α(z0), . . . , R

n
α(z0), . . .

}
(2)

A point zf ∈ Ĉ is a fixed point if Rα(zf ) = zf . Note that in this case,
0 and ∞ are fixed points of the operator Rα. Fixed points that do not agree
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with a root of p(x) = 0 are strange fixed points, these can be classified as
follows. A fixed point zf is called an attractor if |R(zf )| < 1, superattractor
if |R(zf )| = 1, repulsor if |R(z0)| > 1 and parabolic if |R(z0)| = 1. Many
works in the literature, (see [5], [6], [7], [8]) which analyse specific families, try
to find methods where the strange fixed points are repulsors.

For an attracting fixed point zf of the rational function Rα its basin of
attraction is defined as the set of its pre-images of any order such that

B(zf ) =
{
z ∈ Ĉ : lim

n→∞
Rn

α(z) = zf

}
(3)

The set of points in the Riemann sphere whose orbits, O(z0), tends to an
attracting fixed point zf is defined as the Fatou set, F (Rα). The complementary

set in Ĉ, the Julia set J (Rα).
A periodic point zp of period p > 1 is a point such that Rp

α(zp) = zp
and Rk

α(zp) ̸= zp, for k < p. A pre-periodic point is a point zpp that is not
periodic but there exists a k > 0 such that Rk

α(zpp) is periodic. An important
result, Sharkovsky’s theorem (see [3]), states that if a periodic orbit of period 3
exist then periodic orbits of arbitrary periodicity can appear.

A critical point zc is a point where the derivative of the rational function
vanishes, R′

α(z0) = 0. In addition, a free critical point is the critical point
that does not match the roots of the polynomial. Another classical result, [4],
establishes that there is at least one critical point associated with each immediate
invariant Fatou set.

2.3 Dynamical Planes

The process of generating a dynamical plane is straightforward, aimed at gaining
a visual understanding of a family method’s behaviour.

Let be the rational operator that associates any function with an iterative
method, the dynamical plane illustrates the basins of attraction of the operator.
In this case, the function is the quadratic polynomial and the method is one of
the family given by a specific parameter, and then applying the Möbius trans-
formation, the operator Rα(α known) is obtained. A map of the complex plane
is defined and the orbit of every point in the dynamical map is studied. The dy-
namical plane can be visualised whether the method converges to a fixed point,
or not, and its speed of convergence. The different points of the orbit can also be
represented visually. Normally, each basin of attraction is drawn with a different
color, using bright colours for the basins of attraction of attracting fixed points
and black for the basins of attraction of attracting periodic points. In addition,
the brightness of the colour indicates the number of iterations needed to reach
the fixed point.

In Figure 1 we have drawn, first, a dynamical plane with a periodic orbit
of period 3 and, second, a plane that has two attracting strange fixed points.
Both maps belong to different parameters of the well-known King’s family. The
dynamics of the King’s family are studied here [5].
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Fig. 1: Some dynamical planes

2.4 Parameter Planes

As well as dynamical planes, parameter planes are also relatively easy to draw.
The main idea behind the creation of these maps is the result discussed above,
which states that in each invariant Fatou component is associated with at least
one critical point. Therefore, the behaviour of a free critical point will be studied
for each member of the family, to see if there is any basin of attraction different
from the roots.

First, the expression of the free critical point is taken, which depends on the
parameter. The dynamical behavior of operator Rα depends on the values of
the parameter α so a map of the complex plane representing α parameters is
defined, each point representing a different method of the family. The method
corresponding to each point is iterated over the free critical point and, we paint
this point of the complex plane in a specific colour if the method converges to
any of the roots, 0 and∞, and they are black in other cases. Also, the brightness
of the colour indicates the number of iterations needed to reach the root. It is
known that every value of α belonging to the same connected component of
the parameter space gives rise to subsets of schemes of the family with similar
dynamical behavior. So, it is interesting to find regions of the parameter plane
as stable as possible, because these values of α will give us the best members of
the family in terms of numerical stability.

In Figure 2 we have drawn two different parameter planes associated to
two free critical points of the same family (studied here [7]). Both are closely
connected because for the same parameter we have 2 different free critical points
and it is necessary to study both cases to find the stability.
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Fig. 2: Some parameter planes

3 Computational resource

The computational resource was developed in Matlab App Designer, a devel-
opment environment that provides layout and code views, a fully integrated
version of the Matlab editor, and a large set of interactive components that help
to create user-friendly programmes. In [8] Chicharro et al. described the Mat-
lab codes to draw the fractal images of the dynamical and parameter planes,
which forms the core of this work, as well as lecture notes. To start drawing
fractals we need to define Rα, i.e. define the families with which we will create
the planes. Afterwards, the input parameters for drawing the maps have to be
defined. And finally, create the features to interact with them. The application
is already published in Matlab File Exchange, see in [10].

3.1 Families included in work

To begin with, it has been decided to take six families that have simple expres-
sions of free critical points, such as the following, to being used in the application:

King’s family of iterative methods studied here [5]:

yk = zk −
f(zk)

f ′(zk)
, k = 0, 1, . . .

zk+1 = yk −
f(zk) + (2 + α)f(yk)

f(zk) + αf(yk)

f(yk)

f ′(zk)

(4)

It has an order of convergence 4 for every value of α. Its rational function and
critical points are described by Cordero et al.

PM family of iterative methods studied here [6]:

yk = zk − α
f(zk)

f ′(zk)
, k = 0, 1, . . .

zk+1 = zk −
f(zk)

2

bf(zk)2 + cf(yk)2
f(zk)

f ′(zk)

(5)



Drawing fractals with Matlab 495

Where b = 1−α+2α2

2α2 and c = 1
2α2(α−1) ,

where α ̸= 0 and α ̸= 1. It has an order of convergence 3 for every value of α.
Its rational function and critical points are described by the authors.

KLAM family of iterative methods studied here [7]:

yk = zk −
f(zk)

f ′(zk)
, k = 0, 1, . . .

zk+1 = yk −
1 + 2µk

1 + αµ2
k

f(yk)

f ′(zk)

(6)

Where µk = f(yk)
f(zk)

. It has an order of convergence 4 for every value of α. Its

rational function and critical points are described by the authors.
Kim’s family of iterative methods studied here [8]:

yk = zk −
f(zk)

f ′(zk)
, k = 0, 1, . . .

zk+1 = yk −
1 + βu+ αu2

1 + (β − 2)u+ µu2
f(yk)

f ′(zk)

(7)

Where u = f(yk)
f(zk)

, and it is supposed β = µ = 0. It has an order of convergence

4 for every value of α. Its rational function and critical points are described by
the authors.

The following families were proposed to be studied in the second course of
numerical analysis in the mathematics degree, the below mentioned students
decided to name them.

Rico’s family of iterative methods studied by R. Gomez, M. Molés and J.
Rico:

yk = zk − α
f(zk)

f ′(zk)
, k = 0, 1, . . .

zk+1 = zk −
f(zk) + γf(yk) + δ

(f(yk))
2

f(zk)

f ′(zk)

(8)

Where α ̸= 0 and α ̸= 1, γ = − 1
α2 and δ = 1

α2(1−α) . It has an order of conver-

gence 3 for every value of α. The rational operator is

z3
(
α2 + 2α+ αz3 − z3 + 4αz2 − 4z2 + 5αz − 5z − 2

)
α+ α2z3 + 2αz3 − 2z3 + 5αz2 − 5z2 + 4αz − 4x− 1

(9)

and the free critical point is

−
√
5
√
−α2(α(α+ 12)− 12) + 2(α− 3)α+ 6

3α(α+ 2)− 6
(10)

Bambi’s family of iterative methods studied by A. Damià and A. Toledo:

yk = zk −
f(zk)

f ′(zk)
, k = 0, 1, . . .

zk+1 = yk −
uk

1− 2uk + αu2k

f(zk)

f ′(zk)

(11)
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Where uk = − f(yk)
f(xk)

. It has an order of convergence 4 for every value of α. The

rational operator is
z4
(
α+ z2 + 2z + 1

)
αz2 + z2 + 2z + 1

(12)

and the free critical points are

1

8

(
− 5

α+ 1
− A

B
−

√
16AB − 2α(α(α(4α+ 23) + 59)− 3AB + 40)

(α+ 1)3
− 3

)
1

8

(
− 5

α+ 1
+

A

B
−

√
2

√
−α(α(α(4α+ 23) + 59) + 3AB + 40) + 8AB

(α+ 1)3
− 3

) (13)

Where A =
√
(17− 8α)α2 and B =

√
(α+ 1)2

3.2 Features of the work

Figure 3, Figure 4 and Figure 5 are three screenshots to show all the components
and explain how the application works.

Fig. 3: Screenshot after choosing a family

The first is the pop-up window that appears after selecting a family from the
top left menu. It indicates information to be known about the selected family.
In the same menu where you select from one of the existing families there is an
option to add 3 new families to the resource. To add them you only have to enter
the name, rational operator and one free critical point to generate the parameter
map. Then in the same menu you can edit it, and delete it.

The second image shows a first session with Bambi’s family. In it, both maps
have been drawn without modifying the default options. First, the parameter
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Fig. 4: Screenshot of an example of the application

map is drawn by pressing the “Draw” button and then, to select a parameter
on it, the “Choose” button is clicked form the map. With the chosen parameter,
the dynamic plane is drawn. You can also write the parameter to be used. In
both drawing processes, the green indicator changes to yellow while the iterative
process occurs and turns green when the drawing is ready. It turns black if any
options have been modified and the active map does not correspond to those
options. You can generate orbits in the dynamic plane in two ways, on the one
hand by typing the seed of the orbit and clicking on “Create orbit”, on the other
hand by leaving the seed input box empty and selecting it on the map. The
first case is very useful because you can copy and paste the critical point that
has been used in the parameter plane and see their behaviour. As the orbit is
generated in the upper right corner, the points of the orbit appear one after the
other.

Figure 5 presents, the options available for generating the new plans have
been modified. First, the colours used in the “Custom” menu have been changed.
Additionally, the parameters used to generate the meshes of the planes have been
modified, specifically the number of points and the axes. The axes can also be
modified by zooming in on the generated map (one of the main objectives of the
work) and returning to the default values by clicking on the house symbol. Also,
the characteristic parameters of the iterative process that generates the planes
have been changed, i.e. the maximum number of iterations to finish the loop, and
the tolerance that is searched for when reaching a result. An important change
is in the free critical point that is used to generate the parameter plane. This
family has 2, so being able to switch from one to the other is very interesting and
also one of the objectives of the work. In addition, the numerical value of the
critical points of the selected parameter is added so you can use it as the seed of
the orbit. Last but not least, the fixed points of the method and the attracting
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Fig. 5: Screenshot of an example of the application

are shown numerically in a table and also drawn in the dynamic plane (circles
are the fixed points, asterisks are the attracting ones and squares are the critical
points).

Figure 6 depicts a general flow chart of how the programme works.

Fig. 6: Flow chart of a basic programme execution
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4 Conclusions

This work aims to improve teaching and increase knowledge and interest in
dynamic planes, for all the public fascinated by fractals and their beauty. A
MATLAB® App Designer tool has been developed based on the lecture notes
and the motivation to learn new learning tools. No specific conclusions were
drawn for each family, but these could be drawn as in the following work [5] [6]
[7] [8].

The interface has been designed in such a way that the user can select the
desired family and even add new ones. The personalisation and manipulation of
the planes has been made easily without having to modify the code. The main
objective of linking the two maps by selecting parameters has also been achieved.
Finally, the facility to zoom in on a plane without losing the axis reference and
then redraw it has been successfully achieved.

In future developments, we will try to add more families and improve the
speed of drawing the planes by modifying the code. Alternatively, a similar ap-
plication will be programmed where for each method and equation to be solved,
the dynamic plane will be drawn for the specific basins of attraction.
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Abstract. A large group of mathematics is devoted to the implemen-
tation of iterative methods for solving systems of non-linear equations.
This work is crucial, as these equations can model numerous physical,
biological and even social phenomena that can finally be studied and
even solved thanks to advances in this field.

This presentation is part of the assessment of a second year mathemat-
ics course and focuses on the analysis of a family of iterative methods.
It will analyse their convergence, study their dynamical and parame-
ter planes as well as a detailed analysis of their stability depending on
certain parameters. Finally, it will be observed how it is possible to im-
plement this family to solve specific systems of equations and thus verify
the practicality of these studies for the resolution of real problems.

1 Introduction

In this project we are going to make an introduction to iterative methods for
solving systems of non-linear equations, based on the analysis of their efficiency,
stability and quality.
To do so, we will start with an example of one of them.

Given an initial estimate x0, the iterative expression is:

yk = xk −
2

3

f(xk)

f ′(xk)
, k = 0, 1, . . .

xk+1 = xk −
(
1− 3

4

uk · (1 + βuk)

1 + uk · (β + 3
2 )

)
f(xk)

f ′(xk)
,

We will explain the basis of the most important parameters defining an itera-
tive method and look at these parameters in the example at hand. Thus, the aim
is to give a clear and simplified view of a very important area of Mathematics
such as numerical methods.
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2 Convergence analysis

The first step in any analysis of an iterative method is to check whether it is
extensible from simple equations to systems of equations.

The fundamental requirement for this is that there are no vectors in the
denominator when making the change, since a denominator with a matrix can
be substituted by the inverse of the matrix, but a denominator with a vector
cannot be substituted at all.

In our case:

y(k) = x(k) − 2

3
[F ′(x(k))]−1[F (x(k))], k = 0, 1, . . .

x(k+1) = x(k)−

(
I − 3

4
·
[
I + Uk(β +

3

2
)

]−1

·
[
Uk · (I + β · Uk)

])
[F ′(x(k))]−1[F (x(k))]

where we denote Uk = [F ′(x(k))]−1[F ′(y(k)) − F ′(x(k))], which, being the
product of two matrices, is a matrix. Bearing this in mind, the proposed trans-
formation to systems is valid because, carrying out the products, we are left with
the vector x(k) by subtracting the product matrix by vector (which is a vector),
which corresponds to the form that will have x(k+1).
Then, the transformation to apply our method to systems is direct.

- Scalar convergence order with Mathematica.
For scalar convergence analysis, Taylor developments are used to express f(x)

and its derivative as error expressions. Using a simple algorithm in Mathematica,
obtenemos:

ek+1 =

(
c32 −

8βc32
3
− c2c3 +

c4

9

)
e4k +O(e5k)

Whereby the family has order 4.

- Development of the vector convergence order. Taking the sys-
tem transformation from the previous section, we will write vector Taylor devel-
opments up to fourth order, based on the scalar order deduction:

F (x(k)) = F ′(x̄)
[
ek + c2e

2
k + c3e

3
k + c4e

4
k

]
+O(e5k) (1)

F ′(x(k)) = F ′(x̄)
[
I + 2c2ek + 3c3e

2
k + 4c4e

3
k

]
+O(e4k) (2)

[F ′(x(k))]−1 =
[
I − 2c2ek + (4c22 − c3)e2k + (6c2c3 − 8c32 + 6c3c2 − 4c4)e

3
k

]
[F ′(x̄)]−1+O(e4k)

(3)

Error in iteration y(k)

We calculate the error in the first step, equation (1):

y(k) = x(k) − 2

3
[F ′(x(k))]−1[F (x(k))], k = 0, 1, . . .
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We substitute into the above expressions, operating and grouping terms.
Substracting for the solution x̄ in both sides, we obtain:

y(k)−x̄ = ek−
2

3
z =

1

3
ek+

2

3
c2e

2
k−

4

3
(−c3+c22)e3k−

2

3
(−3c4+4c2c3−4c32+3c3c2)e

4
k

(4)

Development of Uk

We have Uk = [F ′(x(k))]−1[F ′(y(k)) − F ′(x(k))]. To be able to write it, the
term F ′(y(k)) is needed. Taking the expression of F ′(x(k)) and substituting the
error terms ek by y(k)− x̄ (because it is a derivative, we will develop up to third
order):

F ′(y(k)) = F ′(x̄)

[
I +

2

3
c2ek +

(
4

3
c22 +

1

3
c3

)
e2k +

(
−8

3
(−c2c3 + c32) +

4

3
c2c3 +

4

27
c4

)
e3k

]
+O(e4k)

Calculating now F ′(y(k))− F ′(x(k)) we obtain the development of Uk:

Uk = −4

3
c2ek +

(
4c22 −

8

3
c3

)
e2k +

(
28

3
c2c3 −

32

3
c32 + 4c3c2 −

104

27
c4

)
e3k +O(e4k)

Expression of the error

x(k+1) = x(k)−

(
I − 3

4
·
[
I + Uk(β +

3

2
)

]−1

·
[
Uk · (I + β · Uk)

])
[F ′(x(k))]−1[F (x(k))]

The term that complicates the development of the demonstration is the in-
verse of [I + Uk(β + 3/2)]. Operating with the elements inside the parenthesis,
we will propose a development for its inverse by posing a system of equations.

We assume:
[
I + Uk(β + 3

2 )
]−1

= [I + x1ek + x2e
2
k + x3e

3
k]

And knowing that a matrix by its inverse has to be the identity; we multiply,
equalise the terms of the same order and solve:

x1 =
4

3
βc2 + 2c2 x2 = −2c22 +

4

3
β2c22 +

8

3
βc3 + 4c3

x3 =
4

3
βc2c3−

16

3
c32β+

20

3
βc3c2+

104

27
βc4−6c2c3+2c3c2+

52

9
c4+

32

9
β2c2c3+

64

27
β3c32+

32

9
β2c3c2
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And so, we are left with:[
I + Uk(β +

3

2
)

]−1

= [I + x1ek + x2e
2
k + x3e

3
k] = I +

(
4

3
βc2 + 2c2

)
ek+(

−2c22 +
4

3
β2c22 +

8

3
βc3 + 4c3

)
e2k(

4

3
βc2c3 −

16

3
c32β +

20

3
βc3c2 +

104

27
βc4 − 6c2c3 + 2c3c2 +

52

9
c4+

32

9
β2c2c3 +

64

27
β3c32 +

32

9
β2c3c2

)
e3k

Returning to the iterative expression of the second step, simplifying and
subtracting by the solution on both sides:

ek+1 =

(
c2c3 + c32 − 2c3c2 +

1

9
c4 −

8

9
βc32

)
e4k +O(e5k) (5)

Thus, order four is demonstrated for systems.
We can conclude that the order generalises for all members of the family, since,
given any β, the order continues to be four.

3 Efficiency analysis

Another crucial step in method development is the analysis of the efficiency of
our method, because if we are working with a method that is not very efficient,
we may not reach the objective we are looking for and it may be preferable to
modify some aspect to improve efficiency.

For a good analysis, it is useful to compare the efficiency of our method with
that of another existing method to see how it performs.

Family G2

We are going to calculate the number of functional evaluations per iteration
(d) and the number of products/quotients per iteration (op), which are the two
values we need for the calculation of the efficiency.
To calculate d, we note that our method works with two different Jacobian
matrices and with the vector F(x), so d will be:

d = 2 · n2 + n

Next, to calculate op, we will have to develop the expression in such a way that
we can group from right to left resolutions of systems or matrix-vector products
in order to achieve a more efficient programming of the method, since if we
program it without developing it, directly as it is written, the computational
cost will be very high. Furthermore, we must bear in mind that when we find
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ourselves with a matrix-matrix product, we must treat it as the resolution of n
linear systems with the same matrix of coefficients.

Based on these expressions, we develop:

y(k) = x(k) − 2

3
[F ′(x(k))]−1[F (x(k))], k = 0, 1, . . .

x(k+1) = x(k)−

(
I − 3

4
·
[
I + Uk(β +

3

2
)

]−1

·
[
Uk · (I + β · Uk)

])
[F ′(x(k))]−1[F (x(k))]

where we denote Uk = [F ′(x(k))]−1[F ′(y(k))− F ′(x(k))].

We obtain:

- (n+3) linear systems with the same matrix of coefficients→ (1/3) · n3 + (n+ 3) · n2 − (1/3) · n
- A linear system with a different coefficient matrix→ (1/3) · n3 + n2 − (1/3) · n
- Two matrix-vector products → 2 · n2

In total, adding both terms d and op:

op+ d =
5

3
n3 + 8 · n2 + 1

3
n

With this sum, we will calculate the computational efficiency and Ostrowski
indices, which are what will help us to estimate numerically how our method
works.

Ostrowski

I = p
1
d = 4

1
2n2+n

Computational

IC = p
1

d+op = 4
1

5
3
n3+8·n2+ 1

3
n

In both cases, we can observe that the order tends to 1 when n tends to infinity,
which indicates that the method (like all iterative methods for solving systems)
loses efficiency for very large systems.

Newton’s Method

Using the same process for Newton’s method, we obtain the following indices:

Ostrowski

IN = p
1
d = 2

1
n2+n

Computational

ICN = p
1

d+op = 2
1

n2+n+1
3
n3+n2− 1

3
n = 2

1
1
3
n3+2n2+ 2

3
n
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Comparison of methods

The most visual comparison of the two methods is done by means of graphs, in
which the values of the indices for different n and both methods are plotted.
We can observe that for small values of n the Ostrowski efficiency index is higher
for the G2 Family than for Newton, while the computational efficiency index
works the other way around. However, for larger values of n, there is almost no
difference in the value of either index, indicating that their efficiency is quite
similar.

(a) Ostrowski’s Index (b) Computational Index

4 Implementation

The implementation of the Family G2 will be programmed using Matlab. First
of all, we have to define the input parameters: an initial estimate of the solution,
the parameter β, the tolerance, which defines the maximum desired error of the
solution, and a maximum number of iterations.
The central structure of the program consist of an iterative loop in which, in
this case, will be used as a stopping criterion ||x(k+1)−x(k)|| + ||F (x(k+1))||, or
that reaches the maximum number of iterations. Inside the loop, the n+4 linear
systems will be solved by means of the backslash, since the computation of the
inverse of a matrix is very unstable (n of the systems are solved all at once using
the backslash between two matrix). Moreover, with each iteration the values of
x(k) and x(k+1) will be updated, as well as the increase.
Once the loop is exited we will either have the solution to the system, or the loop
will have ended because the maximum number of iterations has been reached. In
addition, it is advisable to calculate the convergence rates and the ACOC (the
parameter that calculates the order of convergence).
With all this, the iterative loop of the program is as follows:
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5 Stability and dynamics of the method

5.1 Rational function and Möbius transformation

The study on the stability and dynamics of the method will be performed on a
rational function obtained by applying on p(x) = (x− a) · (x− b), an arbitrary
polynomial of second degree, the expression of the family to be studied.

For the case of the Family G2, using Mathematica,we obtain the following ra-
tional function.

Op (x, β) = x+

(x− a)(x− b)
(

(a−x)(x−b)(4β(a−x)(b−x)−3(a+b−2x)2)
(a+b−2x)2(3(a2−2x(a+b)+b2+2x2)+4β(a−x)(x−b)) + 1

)
a+ b− 2x
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The function obtained depends on the parameters a and b. To achieve the in-
dependence of these parameters we apply the Möbius operator, (h◦Op◦h−1)(x),
and in this way, we obtain a rational function that only depends on x and β.
Performing the calculations with Mathematica we find the following rational
function.

R (x, β) =
x4
(
8β − 3x2 + (4β − 6)x− 3

)
(8β − 3)x2 + (4β − 6)x− 3

From this expression, deriving the function and evaluating it at 0, we can check
the order of the method for the second degree polynomials.

R(0) = 0, R′(0) = 0, R′′(0) = 0, R′′′(0) = 0, RIV = 8 · (3− 8β) ̸= 0

In fact, this method has order 4, except for β = 3
8 which also cancels RIV , and

therefore, for this value of β has order 5.

5.2 Fixed points

The fixed points of a function are those that return the solution f(x) = x. There
are two types of fixed points: those related to the roots of the polynomial and
the odd points.
The usefulness of calculating these points is that by analysing the behaviour of
the method when working with these points, we can estimate the reliability and
stability of the solutions it provides in general.

We have the rational function:

R(x, β) =
x4
(
8β − 3x2 + (4β − 6)x− 3

)
(8β − 3)x2 + (4β − 6)x− 3

To calculate the fixed points, we equal our variable x, from where we get:



pf1 = 0

pf2 = 1

pf3/pf6 = ± 1
12

(
−
√

16β2 + 72β + 9 −

√
32β2 − 8

√
16β2 + 72β + 9β + 18

(√
16β2 + 72β + 9 − 3

)
+ 4β − 9

)

pf4/pf5 = ± 1
12

(
−
√

16β2 + 72β + 9 +

√
32β2 − 8

√
16β2 + 72β + 9β + 18

(√
16β2 + 72β + 9 − 3

)
+ 4β − 9

)

In addition, we must check whether the ∞ is a fixed point by calculating the
inverse operator. With Mathematica:
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The only fixed points that come from roots of the polynomial are pf1=0 and
the ∞. Then pf2=1, pf3, pf4, pf5 and pf6 are odd fixed points.

Next, we will analyse the stability of 4 fixed points, two strange ones (1 and
pf3) and the ones related to the roots. We must check whether the points are
super attractors, attractors, parabolics or repulsors depending on the value of β
we choose.

Focusing on zero and infinity, these points should be super-attractors. To check
this, we derive the operator and evaluate it at both values:

Indeed, since both evaluations have returned zero, we can say that zero and
infinity are superattractors.
Now we proceed with the strange fixed points

z=1

We evaluate the derivative of the rational function at z=1:

From where: dop1(β) = 12−8β
3−3β

We see that for β = 3
2 , z=1 is superattractor, since this value cancels the

numerator.
For β = 1, z = 1 is not a fixed point, since the denominator of the rational
function is cancelled.
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Now let’s look at the values of β, where z=1 is repulsor, attractor or parabolic:
We take β = a+ ib. ∣∣∣∣12− 8(a+ ib)

3− 3(a+ ib)

∣∣∣∣ = 1

and developing using the method of perfect squares we arrive at the equation of
a circumference: (

a− 87

55

)2

+ b2 =
144

3025

Then for the values of β inside this circumference this strange fixed point is an
attractor; at the boundary of the circle it is parabolic; and for all other values
it is a repulsor.

This can be checked by means of a graphical representation with Mathemat-
ica, where the orange area indicates the values of β at which this strange fixed
point is an attractor (and superattractor), and the grey area the values at which
it is a repulsor:

z=pf3

We evaluate the derivative of the rational function at z=pf3:

We can observe that for the values β = −4.40149 y β = −0.126061 pf3 will be
a super attractor. In a region around both points the point will be an attractor.
To calculate these regions, we solve |dop2| = 1.
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Since trying to solve this equation with Mathematica yields inconclusive re-
sults, we estimate the value of the boundaries of the region using two graphs in
3D and 2D.

Then the fixed point pf3 will be:
- Attractor for −0.12868 < β < −0.12062 and for an approximate region of
−4.47 < beta < −4.37.
- Parabolic for β = −4.47, β = −4.37, β = −0.12868, β = −0.12062.
- Repulsor on all other real values.
The rest of the analysis for the other points would be done in the same way,
taking into account that the conjugate fixed points behave the same in the same
areas in terms of attraction.

5.3 Critical points

Critical points override the derivative operator:

Dop = dOper
dx = d

dx

(
−x4(−8β+3x2−4βx+6x+3)

8βx2−3x2+4βx−6x−3

)
= 0

Solving with Mathematica, we obtain the following points: x=0, x=-1, and
two conjugate roots (we will denote them as cr3, cr4):

cr(β ) =
−3β2 ±

√
3
√
3β4 + 28β3 + 84β2 + 80β − 14β − 20

4(2β + 5)

We prove that x=-1 is a pre-image of 1 and that infinity is too a critical
point:

Within the critical points, we are interested in the free critical points: those
that do not come from roots of the polynomial and can create basins of attrac-
tion that lead to strange fixed points. In this case, we have: -1, cr3 and cr4.
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Before the analysis, we check from which we determine that, if β=0, numerator
and denominator are simplified. Let us analyse cr3, cr4 which depend on the
parameterβ.

cr3[β], cr4[β]
Our goal is to locate free critics to determine the behaviour of a large part of
the methods in our family. We are interested in finding a value of β that causes
these critics to be non-free. Matching:

As expected, we get the same results, due to both critics being conjugated.
For these values, the only free critical point will be x=-1.

By solving, we see that β=0 makes cr3, cr4 non-free critical points. Moreover,
this value simplified our operator. Let us see what happens for this value: β=0:

Then, β=0 causes the Möbius transform on our family to satisfy Cayley’s
test. In this case, x=-1 it is neither fixed nor critical, and there are no free crit-
ics, therefore the dynamic plane for this value of β shall consists os two basins
of attraction, corresponding to 0 and ∞.

We also analyse those values that cancel the denominator of cr3, cr4:4(2β +
5) = 0 −→ β = 3/8. If we go through the same steps again for this value, we get
that the only free critical point is x=-1.

It is to be expected that, when β does not take any of the values listed above,
the free critical points will be -1, cr3[β] y cr4[β].

5.4 Dynamic planes

A dynamic plane is a graphical representation that allows to observe the basins
of attraction of a certain parameter β. Each point on the plane symbolizes an



512 Belén Perelló Garćıa

initial estimate (the x-axis represents the real part and the y-axis the imaginary
one) which will be painted in a color if it converges to a critical point for that
estimation, and in black if it converges to an odd fixed point or does not converge
at all.
We will analyze the dynamic planes for the Family G2 using two different values
of β in order to see the different behaviors.

β = 0

For this value of β the rational func-
tion simplifies to R(x) = x4 satisfying the
Cayley test. This fact explains why the
only two basins of attraction are the 0 (or-
ange) and the ∞ (blue), which are the
two critical superattractor points. Fur-
thermore, we observed 3 strange fixed
points (1, -0.5-0.866i, -0.5+0.866i) which
are repulsors since they are found in the
Julia set, and we do not have any free crit-
ical points.
As we can see, the only black region of the
plan corresponds to the Julia set.

β = 3/2

For this β value there are 7 fixed
points (0, 1, -0.4805, 0.7808-0.6248i,
0.7808+0.6248i, -2.081, ∞). There are 4
critical points; (0, 1, ∞) are superattrac-
tor points and each one has its own basin
of attraction. The 0 basin of attraction is
orange, the 1 basin is green, and the ∞
basin is blue. On the other hand, the -
1 is a free critical point but is pre-image
of the 1 so it falls in the basin of attrac-
tion of the 1. This has a negative influence
on the stability since z=1 is a fixed point
coming from the divergence of the original
method.
The other 4 strange fixed points are on

Julia set and therefore they are repulsors. Once again, the Julia set is the only
black area in the plane.
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5.5 Parameter planes

The parameter planes are a graphical representation that helps us to analyze
the stability of the family for different values of the parameter β. For its rep-
resentation, we must use a free critical point that depends on the parameter.
Each point of the plane corresponds to a value of β, which will be colored red
if the critical point we are working with converges to zero or infinity, for that
value of the parameter and, on the other hand, the point will be painted black
if the critical point converges to another thing, usually to an odd fixed point. In
general, a method will be stable if all its critical points converge to a fixed point
that is not strange, that is to say, to zero or to infinity.

This means that the existence of red regions denotes a strong stability of the
method for the parameter values that fall on them. As the red gets darker, the
method associated with this value of β will become more unstable, since this
will indicate that more iterations have been needed to converge, until reaching
black, which are regions that denote a high instability of the method for the
parameters over them.

In the case of the Family G2, there are two free critical points that depend
on β, but conjugate with each other. For this reason, only one plane will be
represented, given that in both cases they will be the same.

cr(β) =
3− 2β + 4β2 ± 2

√
9β − 9β2 − 4β3 + 4β4

8β − 3

We obtain the following parameter plane.
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A large red zone can be observed abounding in the plane, indicating that
this family is quite stable. However, there are black areas that will cause those
values of the parameter not to converge to the roots.

5.6 Orbits

It is important when working with our method to check whether or not it has
a large number of orbits, as orbits can negatively influence the stability of the
method. When an iteration method falls into one of these orbits, it will go
through each of the points that form the orbit over and over again and will not
find the solution.

Sharkovsky’s theorem tells us that if the family of iterative methods has an
orbit of period three, then it will have orbits of any period.

To search for the period three orbit we resorted to trial and error, focusing
on searching for them on the black areas of the parameter plane, in particular
on the Mandelbort sets.

(a) β chosen (b) Orbit of period 3

We note that the method that arises from taking β = 2.15667+0.2i gives us
an orbit of period three.

Matlab shows us the last point it has reached by iterating a given maximum
number of times, in this case z= 2.1865 + 0.37245i. Knowing this point, we
can then check that it is indeed the orbit we are looking for, by evaluating in
Mathematica the operator of our family on this point 3 times, and obtaining
again the same point:
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We can therefore conclude that our method, by having an orbit of period
three, will have orbits of any period.

6 Conclusions

By making a numerical study, comparing the black and red zones, we can con-
clude:

When taking parameters from the black area, it was observed that the results
were irregular, especially when viewing the errors made in each iteration. In
addition, values such as β = 2, β = 1.5 lead to unstable methods, since it was
necessary to take an initial estimate close enough to the solution, and in practical
cases it is not possible to know the solution in advance.

It is also interesting to note the non-convergence to a uniform solution when
working with different values of the parameter. This is explained by the fact that
each beta has a different dynamic plane associated with it, with different con-
vergence basins, so that the same initial estimates converge to different solutions
in each case.
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